
Scal~r Functions:
An APL Analysis of the Vertical and Horizontal Implementations

By

W i I ey G re i ne r

B.S. (University of California) 1974

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Engl neeri ng

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved:

............. Roberts. Fabry, Chairman
Professor Richard M.

Committee in Charge

..... -~-rt,.! .r.?.s..
i

SCALAR FUNCTIONS: AN APL ANALYSIS

OF THE VERTICAL AND HORIZONTAL IMPLEMENTATIONS

Master of Science

THESIS ABSTRACT
June 1975

Wiley Greiner

Electrical Engineering
and Computer Scie

Signature~::::::::::2~~~0::~~
Thesis Committee

Plus, Minus, Modulo, Maximum and Nor are examples of

scalar functions. If one or more operand is an array, a

scalar function performs an identical computation for each

element in the result, which is also an array.

Array processors typically support a set of instructions

that act like scalar functions. These instructions can be

combined to simulate more complex scalar functions, without

looping. Alternatively, scalar functions can be simulated as

a program which loops once for each element of the array

result- These two simulation methods are named the vertical

and horizontal simulation methods, respectively.

Both methods have been used on an array processing APL

machine designed by the Center for Research in Management

Science, where the vertical simulation was found to be much

clearer to read and faster, but bulkier, than the horizontal

simulation, for most--but not all--scalar functions.

This discovery is one of many conclusions that may apply

to similar dynamically allocating array processors, including

the next generation of APL emulators.

ii

TABLE OF CONTENTS

1. Introduction 1

2. Definitions and Formalizations 4

SCALAR FUNCTIONS 4
ITERATING FUNCTIONS: THE HORIZONTAL IMPLEMENTATION 6
SCALAR EXPRESSIONS: THE VERTICAL IMPLEMENTATION 8
DUALITY AND FUNCTIONAL EQUIVALENCE. 10

3. APL@CRMS Standards 12

4- The APL@CRMS Scalar Instruction Set 15

5. Some Nitty Vertical Examples 16

EXAMPLES OF THE VERTICAL STYLE 16
EXAMPLES OF SCALAR INSTRUCTION IDIOSYNCRACIES 17
EXAMPLES OF LOCALIZATION 19
EXAMPLES OF NON-DISTRIBUTION 20
EXAMPLES OF NON-SIMULATION APPLICATIONS 21

6. Two Advantages of Programming Vertically 22

CLARITY 22
GENERALITY 23

7. Two Useful Vertical Programming Tools 24

MULTIPLYING BY A BINARY VALUE 24
MULTIPLE ASSIGNMENTS 25

iii

a. The APL CRMS Vertical Implementation 26

9. Reducing the Scalar Instruction Set 28

10. Three Scalar Expression Limitations 31

A SCALAR INSTRUCTION SET THAT IS INCOMPLETE 31
A FUNCTION THAT IS NOT QUITE SCALAR 33
A SCALAR FUNCTION THAT IS TOO COMPLEX 36

11. Dyadic SE/ IF Efficiency 38

THE SCALAR OPERAND MICROCOSM 38
USEFUL TERMS 38
IF SPACE-EFFICIENCY 39
SE SPACE-EFFICIENCY 41
TIME-EFFICIENCY 44

12. Conclusion 46

iv

Section 1

Introduction

Many useful array manipulations--such as multiplying a

vector by a scalar to obtain a vector, and adding together two

matrices of the same shape to obtain a third--are called

scalar primitives. The APL computer language provides a large

collection of built-in scalar primitives. All scalar
1

primitives have one result, and at least one source operand.

The 1 th element of the result is computed using an element

from each source operand- If a source operand contains

exactly one element, then that element is used. Otherwise,

the 1th element is used. Comprehensive definitions will be

presented when more key terms have been described.

The APL@CRMS 1 host machine 2 executes a set of

instructions, including Times and Plus, that act like scalar

primitives. These instructions are known as scalar

instructions ■ Other instructions, such as branch and index,

do not act like scalar primitives. The Scalar Instruction Set

contains all scalar primitives that correspond to exactly one

machine instruction ■ The remaining scalar primitives are

lp. McJones, c. Grant & w. Greiner, CRMS APL Processor
Manual, Center for Research in Management Science, University
of California, Berkeley (Revised May 30, 1974).

2The APL@CRMS host machine is microprogrammed to emulate
a subset of the APL language. For more information about this
machine, consult the Digital Scientific Corporation META 4
Computer System Microprogramming Reference Manual, publication
number 7043MO (March 1972).

Section 1: Introduction Page 2

bootstrapped from more than one instruction. This paper

examines the two bootstrap methods used on the APL@CRMS

system: th~ horizontal and the vertical methods- The

horizontal method computes each element of the final result

(from start to finish) before beginning to compute the next

element of the final result- A program that adds a vector to

a scalar then multiplies the sum by another scalar, by looping

once for each element in the vector, is an instance of the

horizontal method- The vertical method performs a single­

instruction operation on all intermediate results before

executing the next single-instruction

vector to a scalar then multiplying

operation. Adding a

this sum by another

scalar, using the Plus and Times scalar instructions, is an

instance of the vertical method. Here, the intermediate

result--a vector of sums--has a shape equal to the shape of

the final result- In general though, intermediate results may

have more, or less, elements than the final result.

One or more scalar instructions occur in each APL@CRMS

vertical implementation. These implementations take advantage

of the array processing features of scalar instructions.

Unfortunately, the existing vertical implementations are not

yet understood well enough to be systematically adapted for

any arbitrary scalar primitive- Or, more to the point,

discovering a vertical implementation i~ a heuristic problem.

Yet many aspects of the vertical, array processing method are

beginning to be understood. The vertical method, because it

Section 1: Introduction Page 3

lacks conditional branching, should be of particular interest

to users of parallel and non-backup pipelined machines. This

paper compares interesting aspects of the vertical method to

similar

horizontal

aspects of a universally-adaptable, looping,

method. Dynamic storage allocation and

deallocation demands, relative execution speeds, program style

and clarity, user error detection, time- and space-efficiency,

and both theoretical and practical limitations are among the

aspects compared.

The APL community has long been aware of the array

processing features of one-line programs that use scalar

primitives. A 1971 APL reference manual, 3 for example, spoke

of "programs that were originally expected to work on single

numbers, but which turn out to work just as well on vectors of

numbers- •• rt isn't clear how this can be done." Although

many APL references notice these powerful one-line programs,

few attempt to analyze the tradeoffs between non-looping

programs and looping programs that do the same thing.

paper attempts one such analysis-

This

3APL/360 Primer, IBM number GH20-0689-2, P• 110 (1971) ■
This primer is a second revision- Interestingly enough,
neither the original nor the first revision contain a similar
quotation-

Section 2 Page 4

Definitions and Formalizations

SCALAR FUNCTIONS

Scalar functions have one, two or more source operands,

and return exactly one result. This result is scalar only if

all source operands are scalars. The result is an array if

any source operand is an array. The shape 4 of the result of

a monadic 5 scalar function is the same as the shape of the

lone source operand. R, the shape of the result of a non-

monadic scalar function, depends on {Si: l~i~N}, the shapes of

the N source operands. The four possibilities are:

u) If the set S'={Si:
one or more shape,
is the same as
singleton-shapes.

s 1. ~ singleton-shape}, 6 contains
a 1 of which are identical, then R
the shapes in {Si} that are not

b) Otherwise, ifs• is the empty set, then R is the same
as the longest of the Si vectors.

c) Otherwise, if the lengths of any two vector members

4The shape of an APL variable is a vector of dimensions.
The shape of a 2 by 3 by 4 array, for example, is 2 3 4. The
shape of a scalar is the empty vector.

5Monadic means
source operands.

one source operand. Dyadic means two

6sinqleton-shapes are vectors that contain only
ones- Singletons are single element variables,
scalars, single element vectors, and 1 by 1 matrices.

numeric
such as

Section 2: Definitions and Formalizations Page 5

of s' are unequal, then generate the "RANK ERROR" 7
trap. No result is returned.

d) Otherwise, some elements in some vector members of s'
are unequal ■ Generate the "LENGTH ERROR" trap. No
result is returned.

In summary:

R, the shape of the result:--

--depends on the shapes in {Si}' and not on the values
of the elements in the source operands ■

--is the same as one or more shapes in {Si}.
~

--would be unchanged if the ordering of the operands
were rearranged.

Scalar functions:--

--are never functions of less than one variable ■

--give the illusion that identical logic is re-executed
once for each element of the result. (The actual
implementation is not required to follow the
illusion.)

Here is the Fundamental Criterion of Scalar Functions:--

--The result of a scalar function never depends on the
order in which the elements of the result are
computed.

In fact, the elements might as well be computed in parallel ■

The Criterion will be invoked later to distinguish scalar

functions from the similar monadic"?" function (Roll) ■ The

Roll function generates pseudo-random positive integers,

7The rank of an APL variable is the number of dimensions
it has ■ Or, more precisely, an APL variable's rank is the
shape of its shape. The ranks of a scalar, vector, matrix,
and N-dimensional array are 0, 1, 2, and N, respectively.

Section 2: Definitions and Formalizations Page 6

analogous to the "roll of the dice."

Scalar primitives are defined as scalar functions that

happen to be APL language primitives. All scalar primitives

are either monadic or dyadic scalar functions. A Non­

Instruction Scalar Primitive is any scalar primitive which is

not functionally equivalent to one APL@CRMS instruction ■ Non­

Instruction Scalar Primitives are simulated with more than one

APL@CRMS instruction ■ These simulations must be careful to

generate the correct error trap whenever operands are outside

their domains. Currently, two types of scalar function

simulations have been implemented on the APL@CRMS system: the

horizontal Iterating Function and the vertical Scalar

Expression simulations ■ They are described below.

ITERATING FUNCTIONS: THE HORIZONTAL IMPLEMENTATION

The looping Iterating Function (IF) method re-executes

some logic once for each element of the result ■

Definition:--

--An Element Iteration is the horizontal logic which is

computed once for each element of the result by an

Iterating Function ■ The result must be independent

of the order of iteration ■ This latter requirement

stems from the previously defined Fundamental

Criterion of Scalar Functions.

Section 2: Definitions and Formalizations Page 7

The typical IF contains three parts: the front-end part, the

re-executing Element Iteration part, and the back-end part. A

front-end part for a monadic scalar function might look like: 8

] S:=.SHAPE.X
] X:=.RAVEL.X
] I:=.SHAPE.X
] R:=X

& Sis the shape of the operand, x.
& Ravel X into a vector.
& I is the length of this vector.
& Initialize the result, R.

The re-executing Element Iteration part of the Signum--or

"sign of" function--might look like:

] START: GOTO END IF I=0
1 R[I]:=1 & Assume positive.
] GOTO DONE IF X[I]>0
] R [I] : =0 & Assume zero.
] GOTO DONE IF X[I]=0
] R [I] : =-1 & Necessarily negative.
1 DONE: J;:=I-1
] GOTO START
) END:

And the back-end part might look like:

R:=S.RESHAPE.R

Notice how the above IF performs a special test designed to

determine whether the source operand is an empty 9 array.

Also notice that the re-executing Element Iteration part

8Raw APL lines are denoted by a right bracket, ")", on
the left margin. If an APL line contains an"&", then
everything to the right of the leftmost"&" is comment.

9An array is empty if it contains no elements- Length
zero vectors and 2 by 0 matrices are examples of empty vectors
and matrices, respectively.

Section 2: Definitions and Formalizations Page 8

indexes into a ravelled10 version of the operand. The

operand had to be ravelled into a vector so that each element

could later be indexed, one at a time. The expense of front­

end ravelling and back-end reshaping could have been avoided

if APL@CRMS contained an instruction that indexed the r th

element of any APL variable, independent of its

dimensionality. Adding such an instruction to. the APL@CRMS

non-scalar instruction set could improve IF time and space

efficiencies.

SCALAR EXPRESSIONS: THE VERTICAL IMPLEMENTATION

A Scalar Expression, unlike an Iterating Function, does

not loop. In other words, a Scalar Expression is executed

once for each result, rather than once for each element of the

result• Scalar Expressions compute multiple element results

in just one pass due to the array processing nature of each

scalar instruction. Scalar instructions may internally11

invoke logic that is sequential, parallel, pipelined, or even

magical in nature. The internal logic is transparent to the

software programmer. Certain hardware designs may run faster

lOThe ravel of any N element APL variable returns an N
element APL vector ■ The N elements are stored in row-major
order (like PL/I, and unlike FORTRAN). Ravelling a scalar, a
2 by 3 matrix, and a vector returns a single element vector, a
six element vector, and an unchanged vector, respectively.

11APL@CRMS scalar instructions invoke very fast microcoded
loops.

Section 2: Definitions and Formalizations Page 9

than others, but for our purposes, it does not matter that,

say, a particular sequential machine runs faster or slower

than another parallel machine.

Definitions:--

--A 2 Scalar Expression, where 2 is a
functions, is an APL expression
following svntactic qualifications:

set
that

of scalar
meets the

1. All of its function calls are to functions
in the set 2, and

2. All of its constants are scalars.

--A scalar-bound variable is any variable that is known
to be a scalar: its rank is zero-

--A Monadic(Dyadic) § Scalar Expression is a 2 Scalar
Expression that contains exactly one(two) variable(s)
that is(are) not scalar-bound.

If one understands the above definitions, the following

unproved assertions should be plausible:--

--A Monadic 2 Scalar
scalar function of its
scalar-bound.

Expression returns a monadic
only variable that is not

--A Dyadic 2 Scalar Expression returns a dyadic scalar
function of its two variables that are not scalar­
bound.

We will frequently refer to an APL@CRMS Scalar Instruction Set

Scalar Expression. These seven words will be abbreviated as

SE.

Section 2: Definitions and Formalizations Page 10

DUALITY AND FUNCTIONAL EQUIVALENCE

Many languages besides APL support scalar functions.

APL, however, is one of the few languages that would evaluate

an expression like

A:=(B+C)xD

vertically. If B, C and Dare equally shaped arrays, then APL

must allocate storage for the intermediate result array, B+C.

Most other languages that support scalar functions, such as

ALGOL, PL/I, and some BASICs would evaluate the above

expression horizontally, as one implicit do-loop. In other

words, each element A[i] of the final result is computed, from

start to finish, before beginning to compute the next element.

Definitions:--

--The dual of a SE is an IF that executes the SE

horizontally as an Element Iteration: The SE is

evaluated, with scalar arguments, once for each

element of the result-

--The dual of the dual of a SE, is the SE itself.

Every SE has a dual- But not every IF has a dual, because an

!F's Element Iteration need not conform to the constraints12

12Refer back to the definition of an~ Scalar Expression,
given earlier in this section-

Section 2: Definitions and Formalizations Page 11

that Scalar Expressions must c9nform to. If an Element

Iteration contains any conditional branching, then the Element

Iteration's IF has no dual.

A SE and its dual are functionally equivalent. Two

algorithms are said to be functionally equivalent if, whenever

they both compute results, the two results are equivalent.

However, when both generate errors in lieu of results, these

errors need not be equivalent. This is because multiple user

errors may be detected in a different order, by the two

algorithms. Assume, for example, the existance of two

functionally equivalent simulations of the Divide scalar

primitive. The two might generate different errors for the

expression

(lE-30 6 9) + (1E34 2 0) & which performs a scalar

division between two three-element vectors. Here, three

divisions must be computed, two of which contain user errors.

One simulation might try to compute lE-30 • 1E34, and detect

an underflow error. A functionally equivalent simulation

might try to compute 9 + 0 first, instead, and detect a divide

by zero error.

Also, if an algorithm successfully computes a result, .a

functionally equivalent algorithm might generate an error. A

SE may successfully compute a result, for example, while its

fun~tionally equivalent dual generates the "NO MORE SPACE

LEFT" trap.

section 3 Page 12

APL@CRMS Standards

APL@CRMS supports the following scalar primitives, some of

which are Non-Instruction Scalar Primitives.

Monadic:-­

No_Change
Change_Sign
Signum
Reciprocal
Exponential
.Logarithm

. Ceiling
Floor
Magnitude
Factorial
Pi_Times
Not
ID
Translate

Dyadic:--

Plus
Minus
Times
Divide
Power
Logarithm
Maximum
Minimum
Residue
Combinations
Circle
(
(
(
And
Or
Nand
Nor
Less_Than
Not_Greater
Equal
Not_Less
Greater
Not_Equal

(sign of)
(1 divided by)
(e raised to)
(natural log of)
(least int not<)
(greatest int not>
(absolute value of)
(gamma function of)

(internal type of)
(convert between types)

(raise to a power)
(log to a base)

(similar to remainder)
(complete beta function)
(sin, cos, tan,
arcsin, arccos, arctan,
sinh, cosh, tanh,
arcsinh, arccosh •••)

Section 3: APL@CRMS Standards Page 13

An early design goal of APL@CRMS was to be similar to

APL\360. APL\360 at the time was the dominant APL

implementation• So, it was felt APL@CRMS programmers would

probably have had prior APL\360 experience.

There are many differences13 between the APL\360 and

the APL@CRMS implementations, however. The two were designed

for different purposes: APL@CRMS was designed primarily· to

run extremely interactive management science experiments:

APL\360 wasn't. APL@CRMS is almost a decade newer. It

incorporates newer hardware technologies and software

strategies. Yet, most of the differences appear so well

thought out that studies, such as this, performed on APL@CRMS

should apply to existing APL implementations, as well as

future implementations now on the drawing board.

A few of the differences affect scalar functions,

indirectly. One such difference is a new data-type. Mixed

arrays, which existed in the earliest description of APL, 14

are arrays that contain both numbers and characters. APL\360

does not support mixed arrays, whereas APL@CRMS does. Special

scalar primitives exist in APL@CRMS for manipulating mixed

arrays. These primitives comprise the set of mixed scalar

primitives. This set never existed on APL\360. APL@CRMS was

13w. Greiner, APL@CRMS Users Guide, Center for Research in
Management Science, University of California, Berkeley (To Be
Published).

14 K. E. Iverson, A Programming Language (1962).

Section J: APL@CRMS Standards Page 14

required to establish standards for the handling of mixed

arrays, through trial and error. It now appears that the set

of mixed scalar primitives, as currently implemented is

incomplete. The issue of completeness will be discussed

further in the subsection, "A SCALAR INSTRUCTION SET THAT IS

NOT COMPLETE."

Expressions which contain more than one assignment

symbol (":=") are called

implementations evaluate some

Pornographic. Some APL

pornographic expressions in a

hard-to-anticipate

evaluates these

predictable rule:

manner- APL@CRMS, however, always

expressions according to a straightforward,

all multiple assignments are evaluated in

strict, right-to-left, order. Thus, the expression

((A: =2) +A) +A: =l & for example,

returns 4, in APL@CRMS. The same expression might return 5 or

6 on some IBM-based APL implementations, such as .APL.sv~,

APL*PLUS, and PCS\APL. The subsection, "MULTIPLE

ASSIGNMENTS," discusses some reasons for using expressions

that contain more than one assignment symbol-

-ID-Y

-TRANS.Y

X=Y

Section 4 Page 15

The APL@CRMS Scalar Instruction Set:

& (ID) Returns 1 if Y is numeric, O if character­

& (Translate) Converts from character to integer,
& and integer to character. The "DOMAIN ERROR"
& is generated if Y is numeric, but not an
& integer between 0 and 255.

& (Equals) Returns l(true) or 0(false). See below
& for traps that may occur when X and Y are numeric-

1 & All following instructions will generate the "TYPE ERROR"
1 & if any element of their operand(s) is non-numeric-

) +Y & Returns y.

-Y & (Change_Sign) Returns Y subtracted from o.

-FLOOR.Y & Returns the greatest integer not greater than y.

-CEILING-Y & Returns the least integer not less than Y.

IY & (Magnitude) Returns the greater of Y and -Y.

X+Y & (Plus) Dyadic+ - x +<and= may generate the

X-Y & (Minus) "FLOATING POINT OVERFLOW ERROR," or the

XxY & (Times) "FLOATING POINT UNDERFLOW ERROR" traps.

X+Y & (Divide) May generate the "DIVIDE BY ZERO ERROR."

X<Y & (Less_Than)

& All following instructions will generate the "DOMAIN ERROR"
& if any element of any operand is non-binary.

-Y

x.oa.y

& (Not)

& (And)

& (Or)

A goal of the APL@CRMS Scalar Instruction Set is to

detect user errors very. soon after they occur, so as to

minimize error propagation.

Section 5 Page 16

Some Nitty-Grittv Vertical Examples

EXAMPLES OF THE VERTICAL STYLE

Vertical programs do not look like horizontal programs.

Their styles are different. Good vertical programs often seem

hideously inefficient and sloppy to someone with only

horizontal experience. Since vertical programs are not yet

commonplace, this section will go over a few SE examples.

These examples will be drawn from scalar primitives, whenever

possible-

A few Non-Instruction Scalar Primitives have very

obvious SE's:

•Y & (Reciprocal) is the 1-0•Y SE.

X-:IY & (Not_Equal) is the -X=Y SE. 15

X>Y & (Greater) is the Y<X SE.

X_5Y & (Not_Greater) is the (X <Y) .. OR. X=Y SE.

oY & (Pi_Times) is the 3-14159265xY SE.

Most Non-Instruction Scalar Primitives, however, have

somewhat less obvious SE's. The dyadic "I" scalar primitive

(Residue), for instance, is defined as follows: 16

15 APL expressions are always evaluated right-to-left,
except that parentheses behave in the usual way. Aside from
this rule, there are no operator precedence rules, whatsoever.

16AIB in APL is similar to B modulo A, the remainder of B
divided by A.

Section 5: Some Nitty-Gritty Vertical Examples Page 17

AIB & for A~0,

& for A=0 and B~0, is B

& for A=0 and B<0, generates the "DIVIDE BY
& ZERO ERROR" trap.

In APL@CRMS, Residue is implemented as one SE which covers all

three cases:

XIY & is the Y-(IX)x°FLOOR ■ Y•IX+(Y<0)<X=0 SE ■

This tricky code is necessary because vertical programs may

not contain conditional branches ■

EXAMPLES OF INSTRUCTION IDIOSYNCRACIES

The monadic "x" scalar primitive (Signum) also has three

cases. If the source operand is positive, negative, or zero,

monadic "x" returns 1, -1, or 0, respectively.

xY & (Signum) is the (0<Y)-Y<0 SE ■

The Signum SE is well-defined for all values of Y largely

because of this very important characteristic of the+ - x • <

and= scalar instructions: None will give inaccurate results,

or generate the unexpected "FLOATING POINT OVERFLOW ERROR" or

"FLOATING POINT UNDERFLOW ERROR" traps if either source

operand is zero. Unfortunately, there can be messy roundoff

and other problems if both operands are nonzero:

& (Maximum) is the X+(Y-X)xX<Y SE, or is it??

Section 5: Some Nitty-Gritty Vertical Examples Page 18

The answer is "no," since:--

--for a very negative X and a small Y, say X=-1E30 and

Y=2, the subexpression (Y-X) returns -x, due to a

common roundoff idiosyncracy. And, at best, zero is

only "close to" (-lEJ0).MAx.2.

--for a very negative X and a very positive Y, and

vice-versa, the subexpression (Y-X) generates the

"FLOATING POINT OVERFLOW ERROR" trap, which is never

an appropriate trap for X-MAx.y.

A better simulation of

] X.MAX-Y & is the (YxX<Y)+Xx-X<Y SE.

Sometimes even this SE generates an unexpected error. When X

and Y are sufficiently close together, but not equal, X<Y

generates the "FLOATING POINT UNDERFLOW ERROR" trap. X<Y in

microcode computes X-Y, which can cause underflow problems

because APL@CRMS does not support unnormalized floating point

numbers. The problem, as numerical analysts know, lies with

the"<" scalar instruction. However, any microprogram patch

that corrects the "<" problem implicitly fixes the ".MAX 0"

problem, _too. This example suggests a prudent precaution:

Since the characteristics of one scalar instruction may have a

strong influence upon the characteristics of many SE's, all

hard-to-anticipate idiosyncracies should be removed from

Section 5: Some ~itty-Gritty Vertical Examples Page 19

scalar instructions. (Many hard-to-anticipate arithmetic

idiosyncracies in APL@CRMS could easily have been eliminated

early in the design by heeding the advice of a competent

numerical analyst.)

These idiosyncracies tend to affect vertical programs

more than horizontal programs. This is because the latter may

conditionally branch around special case code whenever an

operand is out of bounds.

need only test his code

Thus, in the latter, the programmer

between narrow programmer-defined

bounds ■ Special case vertical code, on the other hand, could

conceivably be required to process any operand value,

whatsoever.

EXAMPLES OF LOCALIZATION

If both X and Y were singletons, the double evaluation

of· X<Y by the above Maximum SE would be trivial. But, since X

or Y may be monstrous arrays, a viable alternative for

x.MAX-Y & is the (YxTEMP)+Xx-TEMP:=X<Y SE,

& followed by FREE(TEMP).

SE's defined from now on may contain the Maximum

primitive even though Maximum does not belong to the APL@CRMS

Scalar Instruction Set. This is because the notation,

"■ MAX.", may be considered an abbreviation of the Maximum SE.

The abbreviation principle applies to all SE simulations, and

not just the Maximum SE.

Section 5: Some Nitty-Gritty Vertical Examples Page 20

EXAMPLES OF NON-DISTRIBUTION·

Many mathematical Non-Instruction Scalar Primitives

eva1u·ate a fixed number of terms in one of many selectable

series. The series selected depends on the source operand, x.
Series 1, for example, would be used if 0<X<l: while series 2

would be used if l~X<J.14159: and so-on. This logic could be

implemented as the SE:

{SERlx{O<X).AND.X<l) + {SER2x{l~X).AND.X<3.14159) + •••

Most of the time, the first few operations of SER!, SER2 ,

etc., are identical. Then, tOOi a few series may shaie

operations that are not shared by all the series. The better-

written mathematical SE's tend not to distribute_

multiplication over addition. A non-distributive SE might

look like:

SER_START + {SER_MIDl+{SER_ENDllx •••) + SER_END12X•••)

+ {SER_MID2+{SER_END2lx ...) + SER_END22x ...)

+ •..

Not distributing multiplication over addition increases SE

time-efficiency by reducing the number of scalar instructions

executed. More will be said about the strong relationship

between SE syntax and SE efficiency in the "SE SPACE­

EFFICIENCY" and the "TIME-EFFICIENCY" subsections.

Section 5: Some Nitty-Gritty Vertical Examples Page 21

EXAMPLES OF NON-SIMULATION APPLICATIONS

SE's have many applications in additon to simulating

Non-Instruction Scalar Primitives.

return scalar functions.

Recall that all SE's

The "convert small letter into capital letter" monadic

scalar function could be simulated as the following SE:

1 & Pis the operand of the "convert small letter
1 & into capitol letter" scalar function.
J & Integer SMALL is the scalar constant .TRANS ■ 'a' •
) & Integer DIFF is the constant (.TRANS.'A')-.TRANS.'a' ■
] ■ TRANS ■ CP + DIFFx(SMALL.S,CP) ■ AND.(CP:=.TRANS ■ P)<26+SMALL

This SE assumes that the character codes for small 'a' through

small 'z' are contiguous, as are the codes for capital 'A'

through capital 'z'. The next "convert small letter into

capital letter" SE makes no such continuity assumptions:

-TRANS ■ CP + (((.TRANS.'A')- ■ TRANS.'a') X CP= ■ TRANS.'a')

+ (((.TRANS.'B')-.TRANS.'b') x CP= ■ TRANS.'b')

+ (((.TRANS.'C')-~TRANS ■ 'c') X CP=.TRANS.'c') •••

+((.TRANS.'Z')-.TRANS ■ 'z')x(CP:=.TRANS.P)=.TRANS.'z'

SE's that contain a large amount of conditional logic tend to

be long. But fortunately these SE's can be very easy to

program, as the next sections will show.

-- -------·------- --- ----

Section 6 Page 22

Two Advantages of Programming Vertically

CLARITY

Most people prefer to program horizontally. Perhaps

vertical programs seem too complicated, since vertical

instructions sometimes process large arrays, whereas

horizontal instructions work with simple scalars, only. And,

many people believe that array programming is less natural for

human beings than sequential programming. This belief cannot

always withstand scrutiny. Let's look at the problem of

adding two equally shaped vectors, X and Y, ~lacing the vector

of sums in z. Here is one horizontal approach, using FORTRAN:

9 DO 10 I=l,N
10 Z(I)=X(I)+Y(I)

I doubt whether DO-LOOP syntax looks natural to the novice.

Furthermore, the above DO-LOOP solves only part of the

problem ■ N, the length of X, is not given. Z must be

statically dimensioned for the worst case, since FORTRAN does

not support a dynamic storage allocator ■ A better example of

the horizontal approach is the following APL program, which

implicitly uses APL's dynamic storage allocator:

1
1
)
)

1
1

LOOP:

Z: =X
I:=.SHAPE ■ X

EXIT IF I=0
Z [I J : =X [I J + Y [I)
I: =I-1
GOTO LOOP

& Zand X have the same shape.
& I becomes the shape of x.

Section 6: Two Advantages of Programming Vertically Page 23

Now, contrast the naturalness of the above example with that

of the vertical approach using APL:

Z: =X+Y

The addition of vectors problem

functions that can be stated more

horizontally. Horizontal programs,

is one of many scalar

clearly vertically than

at least in APL, are

notoriously unreadable; whereas vertical programs can be

extremely clear and concise.

GENERALITY

Scalar Expressions offer many programming conveniences

not found in conventional, horizontal programs. Since Scalar

Expressions are unaware of the shapes of their operands, the

Scalar Expression programmer is not responsible for ravelling

or reshaping arrays, or looping, or incrementing and testing

nested counters. Scalar Expressions are never written to work

on an operand with a specific shape: instead, they are always

written to handle the more general case of any operand shape,

whatsoever. And, Scalar Expressions have a surprisingly wide

range of applications. In fact, virtually all the APL@CRMS

scalar primitives have already been implemented as SE's.

-- ~- -- -------

Section 7 Page 24

Two Useful Vertical Programming Tools

Unfortunately, SE programming usually takes considerable

thought. I hope that Scalar Expression programming eventually

will become more standard, and less of an art. With this goal

in mind, let me list two Scalar Expression programming

techniques.

MULTIPLYING BY A BINARY VALUE

Conditional branching can be approximated by summing up

a series of products, each consisting of a term multiplied by

the binary (1 or 0) result of a relational subexpression.

Multiplying a term by a binary value yields either the term

itself or zero- This technique makes the monadic "x" SE very

trivial to derive.

] xY
]

& is (lx0<Y) + (-lxY<0) + 0xY=0
& which can be simplified into (0<Y)-Y<0

It is easy to conditionally induce errors, as in

EXPR + (-l+B<0) + -1+3.1415926<B

which generates the "DOMAIN ERROR" trap unles~ every element

in Bis between zero and Pi. (The domain of the"-" primitive

is the set {0,1}).

The disadvantages of this technique stem from the fact

that certain intermediate rosults--those with no bearing on

the final result--are computed first, then multiplied by zero.

Two of the disadvantages are (1) inefficiency caused by

performing needless computation, and (2) 'hard-to-anticipate

Section 7: Two Useful SE Programming Tools Page 25

errors which occur because no portion of a SE may be

conditionally bypassed when operands are out of bounds.

MULTIPLE ASSIGNMENTS

Multiple statements can be approximated with multiple

assignments. Although multiple assignments are never

necessary, they can significantly reduce SE complexity. Take,

for example, the problem of raising X to the non-negative

integral power P, by performing up to Pmax successive

Normally, the SE complexity grows by multiplications.

Order(Pmax). But, through multiple assignments, the SE

complexity grows by only Order(log Pmax). (For clarity, the

multiple assignment SE is represented as a sequence of smaller

SE's, one per line):

] L!={LxY:=X) + -L:=(I+I:=.FLOOR-P•2)<P
J & previous line handles Pmax=2-1=1
]
1 L!=((LxY:=YxY) + -L!={I+I:=.FLOOR.I•2)<I))xL
] & previous line handles Pmax=4-1=3
]
] & next line handles Pmax=8-1=7
] L:=((LxY:=YxY) + -L!=(I+I:=.FLOOR.I•2)<I))xL

Adding on N more lines exactly like the last pushes Pmax to

2N+3_1.

Unfortunately, all multiple assignment SE's are

pornographic, and so may evaluate unpredictably on certain

IBM-based APL implementations.

Section 8 Page 26

The APL@CRMS SE Implementation

Almost all Non-Instruction Scalar Primitives have been

implemented, in APL@CRMS, as SE's. The smaller SE primitives

are installed as in-line macros, which are "called"

immediately after their operands are pushed onto the stack.

There are three temporary variables, which are global and are

provided for the exclusive use of in-line macros. These

variables are not accessable to the problem program. They

are, however, available to the debugging programmer. In-line

macros which assign values to temporary variables must

explicitly FREE these variables, before "returning." This

makes temporary variables appear to be local. In practice,

temporary variables are used to memorize operands before they

have been popped from the stack. The monadic "x" macro

(Signum or (O<Y)-Y<O), for example, is:

(a)

(b)

(c)

< d >

(e)

(f)

(g)

(h)

(i)

ASSIGN TEMPl

PUSH numeric

INTERCHANGE

LESS_THAN

PUSH TEMPl

PUSH numeric

LESS_THAN

SUBTRACT

FREE TEM.Pl

0

0

(copy top of stack to TEMPl)

(onto top of stack)

(top 2 slots on stack)

(replace top 2 slots with<)

(onto top of stack)

(result is now on top of stack)

(localize TEMPl)

Section 8: The APL@CRMS SE lmplementation Page 27

The larger SE primitives are installed as calls to APL@CRMS

RUNTIME functions. The Call non-scalar instruction instructs

the microprogram to add a new frame on the stack, update a few

state words, and initialize any local variables ■ The Return

instruction reverses the process, and implicitly de-allocates

all local variables.

Compared with the RUNTIME installation of SE primitives,

the macro installation is

--faster because there are no Call or Return

instructions executed ■

--bulkier because the macros usually expand into more

code than that of a single Call instruction ■

£3ection 9 Page 28

Reducing the Scalar Instruction Set

The APL@CRMS Scalar Instruction Set can be reduced from

what is currently supported without losing any functional

properties.

Definition:--

--A set SS of scalar functions is a Reduced Set if all

functions in the APL@CRMS Scalar Instruction Set can

be simulated by SS Scalar Expressions.

The APL@CRMS Scalar Instruction Set is a Reduced Set, by

definition. A more interesting Reduced Set, SS, is

SS = {.TRANS., =, .CEILING., dyadic-, x, +, <, -}

Notice that every function in SS also appears in the APL@CRMS

Scalar Instruction Set, although this is not a prerequisite

for ss to be a Reduced Set. We must show that all functions

in the APL CRMS Instruction Set, but not in SS, can be

simulated by SS Scalar Expressions.

.Io.y & is the 1-(Y='a')-0-(Y='b') ..• -(Y='Z') SE. 17

& (There are 256 APL@CRMS character codes.)

+Y & is the 0-0-Y SE.

l -Y & is the 0-Y SE.

-FLOOR.Y & is the 0-.CEILING.0-Y SE.

1 7All ss Scalar Expressions are also SE's, since ss is a
subset of the APL@CRMS Scalar Instruction Set.

Section 9: Reducing the Scalar Instruction Set

IY

X+Y

& (Magnitude) is the Yxl-2xY<0 SE.

& is the X-0-Y SE.

Page 29

is the -(--X)<-Y SE. The double negation
& generates "DOMAIN ERROR," when appropriate ■

X-AND-Y & is the (-X)<--Y SE ■

If APL@CRMS numbers were represented in two's complement

form, 18 then the 0-0-Y SE would not correctly simulate

monadic "+" for all values of Y ■

There may be SE's which simulate Times, without using

the "x" scalar instruction ■ Due to the finite precision of

"x" and "•", the X+l+Y SE does not correctly simulate "x" for

all values of X and y. One case in point is Y=0.

The"+" primitive cannot be simulated by SS-{"+"} Scalar

Expressions because"•" is the only function in ss capable of

generating the "DIVIDE BY ZERO ERROR" trap. But, the "-"

primitive can easily be simulated by a SS-{"-"} Scalar

Expression ■ Translate can generate the "DOMAIN ERROR" trap,

which is a necessary part of the Not simulation.

SS would still be a Reduced Set if certain pairs of

functions were replaced by single, new functions. But the

above examples should serve to caution Scalar Expression

programmers to pay very careful attention to the

18The set of two's complement numbers is not closed under
the Change_Sign function- This is because a two's complement
number, N, is equal to l+BITWISE_COMPLEMENT_OF(-N).

Section 9: Reducing the Scalar Instruction Set Page 30

idiosyncracies of both the simulated and the simulating

functions-

X=Y

X<Y

& Replace= and< with S· Now, define

& as the (XSY)xYSX SS Scalar Expression, and

& as the (XSY)x-YsX ss Scalar Expression.

Unfortunately both definitions are incorrect when X and/or Y

contain characters. To be more precise, the"=" and"<" ss

Scalar Expressions violate two rules:--

--that X=Y must return O when X or Y, but not both, is

character, and

--that X<Y must generate the "TYPE ERROR" trap when X

and/or Y is character.

A more suitable building block than"<" is"<", where

1 X=<Y & returns 1 if X=Y. Otherwise, it
l & returns 0 if X and/or y is character and X "IY •
l & If neither applies, X<Y is returned. Now,

X=Y & becomes the (X=<Y)xY=<X SS Scalar Expression.

X<Y & becomes (X=<Y)x-Y=<X-Y-Y ss Scalar Expression.

The extra subtractions generate the necessary "TYPE ERROR"

when one or both operands of"<" is character.

The following transformation of a Reduced Set yields

another Reduced Set: Replace all monadic functions with one

dyadic function that dispatches on its left operand.

section 10 Page 31

Three Scalar Expression Limitations

A SCALAR INSTRUCTION SET THAT IS INCOMPLETE

A small number of functions that can be simulated by

Iterating Functions apparently cannot be simulated by any

APL@CRMS Scalar Instruction Set Scalar Expression. This

appears to be caused by minor oversights in the selection of

the APL@CRMS "base set" ~f scalar instructions- One example

appears to be the "translate right operand if the left operand

is zero(false}, else pass right operand unchanged" dyadic

scalar function ■ This function, which will be called

added to Translate2 and be denoted as " ■ TRANS2.", could be

both the APL@CRMS Scalar Instruction Set and to the set of

mixed scalar primitives, and perhaps should be- The addition

would make it possible to implement many functions as SE's

which cannot now be implemented as SE's. One such function is

discussed in the next paragraph.

As was earlier mentioned, APL 360 does not permit arrays

to contain both numbers and characters. APL@CRMS on the other

hand, does permit these mixed arrays. Unfortunately the

APL@CRMS Scalar Instruction

sufficiently considering what

Set was developed without

scalar functions should be

provided to act on mixed arrays. All newly considered scalar

functions must therefore be implemented as SE's or !F's.

Usually, the IF implementation is almost trivial; whereas the

SE implementation is next to impossible-

Section 10: Three Scalar Expression Limitations Page 32

Consider the dyadic scalar function called Add2, defined

as follows: The left operand, L, must be numeric; the right

operand, R, may be numeric or character; RESULT is the sum of

Land R if R is numeric, otherwise RESULT is the character in

1 -ADD2. 'I=' 5 & for example,

would return the three element mixed vector, 'I='6. And,

(0 0 1 17.3 2) .ADD2. '2x' 3 '=' 6

would return the five element mixed vector, '2x'4'='8. Add2

is easy to implement as an IF. The Element Iteration might

look like:

RESULT:=L

EXIT IF --ID-L

RESULT:=L+R

& Exit if character­

& Else compute sum.

Because of the conditional exit, this IF has no dual. In

fact, I doubt that Add2 can be implemented as any SE. Add2

can be implemented, however, as the following Scalar

Instruction Set union Translate2 Scalar Expression:

T.TRANS2. (TxL) + (T:=.ID-R).TRANS2.R

Add2 is one of many scalar functions which probably should be

made available to act on mixed arrays. Other similar

functions are Minus2, Times2, Power2, Logarithm2, and

Section 10: Three Scalar Expression Limitations Page 33

Maximum2. None of these appear to be implementable as SE's.

All can be implemented as IF's, trivially. And, all could be

implemented as SE's if the Scalar Instruction Set included

Translate2.

A FUNCTION THAT IS NOT QUITE SCALAR

Consider the monadic"?" primitive (Roll):

& assigns to R the Roll of y.

Each element in Y must be a positive integer. R has the same

shape as Y, and each element in Risa pseudo-random integer

between one and the corresponding element in y. For example,

? 10 10 2 & might return the vector 6 1 2.

To the casual observer, monadic "?" looks like a scalar

function- But, easily unnoticed by the casual observer is

what will be called the "rule of repeatable pseudo-random

number generators." Namely, the next usage of the generator

accesses a so-called seed, which was set during the last

usage. Thus, the elements in the result of monadic"?" cannot

be computed in parallel, but must be computed one-by-one, and

in some proper sequence. 19

Monadic "?" cannot be simulated by any Scalar

Expression. A formal justification of this statement must

191n APL@CRMS, the monadic"?" sequence is right-to-left.
The expression, "?3 4", for example, first processes the 4
(and sets the seed), then accesses the seed while processing
the 3. Thus, for any vectors A and B, "?A,B" is functionally
identical to "(?A),?B"•

Section 10: Three Scalar Expression Limitations Page 34

wait until after the concepts of multiple- and single­

instruction Element Iterations are introduced.

C FORTRAN-IZED EXAMPLE OF AN ELEMENT ITERATION.

DO 10 I e 1,N
TI =C (I) -D (I)

10 A(I)=B(I)+TI

The "I e 1,N" notation means the programmer is convinced the

result, A, is independent of the order of iteration.

An Element Iteration, like the above example, only with

more than one APL@CRMS scalar instruction per loop is called a

multiple-instruction Element Iteration. Element Iterations

with exactly one such instruction per loop are called single­

instruction Element Iterations.

Assertions:--

--Each function in the APL@CRMS Scalar Instruction Set

performs a single-instruction Element

internally.

Iteration,

--All Scalar Expressions are functionally equivalent to

a permutation of

Iterations.

instruction

And, all

Element

single-instruction

permutations of

Element

single-

Iterations are functionally

equivalent to a Scalar Expression.

Section 10: Three Scalar Expression Limitations Page 35

C FORTRAN-IZED EXAMPLE OF A PERMUTATION
C OF SINGLE-INSTRUCTION ELEMENT ITERATIONS.

DO 20 I e 1, N
20 T(I)=C(I)-D(I)

DO 30 I e 1,N
30 A(l)=B(l)+T(I)

Notice the temporary, T. This large vector was ~issing from

the previous example- Single-instruction Element Iterations

almost always require more temporary storage than functionally

equivalent multiple-instruction Element Iterations-

The previously mentioned "?" function cannot be

simulated by any Element Iteration due to the "rule of

repeatable pseudo-random number generators": The result of

the Roll function is dependent upon the order in which the

elements of the result are computed. Thus, the Roll function

cannot be simulated by any Iterating Function (or by any

Scalar Expression, which goes without saying). Indeed, Roll

is not a scalar function at all, since it violates the

previously defined Fundamental Criterion of Scalar Functions.

Section 10: Three Scalar Expression Limitations Page 36

A SCALAR FUNCTION THAT IS TOO COMPLEX

The dyadic "0 ti scalar primitive (Circular Function) is

defined as follows:

XoY & is Tanh y if X=7

& Cash y if X=6

& Sinh y if X=5

& Sqrt l+YxY if X=4

& Tan y if X=3

& Cos y if X=2

& Sin y if X=l

& Sqrt 1-YxY if X=0

& Arc Sin y if X=-1

& Arc Cos y if X=-2

& Arc Tan y if X=-3

& Sqrt (-l)+YxY if X=-4

& Arc Sinh y if X=-5

& Arc Cosh y if X=-6

& Arc Tanh y if X=-7

& "DOMAIN ERROR" otherwise

The APL@CRMS implementation of Circular Funstion is sort

of a hybrid between the Iterating Function and Scalar

Expression methods- The Circular Function implementation

currently has a front-end which dispatches to:--

Section 10: Three Scalar Expression Limitations Page 37

--The s+x th SE, if Xis a singleton integer between -7

and +7, or

--The Circular Function Iterating Function, if X is

non-singleton, or

--The "DOMAIN ERROR" trap generator, otherwise.

Thus, taking the SIN of an entire array,

loARRAY

causes a dispatch to the SIN, or the 8+1 = 9 th , SE.

At an earlier time, the circular function was

implemented as one very long SE, which employed the previously

discussed SE conditional branch approximation ■ This SE was

unpardonably inefficient, both time-wise, and space-wise. The

time-inefficiency was no surprise, but the space-inefficiency

certainly was!!

Section 11 Page 38

Dyadic SE/ IF Efficiency

Monadic scalar functions are not treated separately in

this section because they may be thought of as special cases

of dyadic scalar functions: the case where the left operand

is a scalar constant. So, many of the conclusions which will

be reached about dyadic SE's and IF's apply to monadic SE's

and IF's, too. We will be very interested in the relative

efficiencies of SE's and their duals-

THE SCALAR OPERAND MICROCOSM

Before tackling the more general case, let's consider

the restricted case of scalar-bound source operands. Here,

all SE intermediate results are,scalars. The same can be said

for all IF intermediate results, too- The space required for

both implementations is equivalent, although negligible- The

APL@CRMS IF implementation, however, necessarily takes more

time than its dual, due to the overhead of the IF front-end

and back-end parts.

USEFUL TERMS

The phrase, outstanding temps, denotes the maximum

amount of space, in words, allocated during a given stage of

SE or IF evaluation- Outstanding temps does not include space

used for the source operands, as these must be allocated under

any algorithm- The phrase, max temps, is MAX(outstanding

Section 11: Dyadic SE/ IF Efficiency Page 39

temps), taken over all stages in a SE or IF evaluation.

The lett~rs F, S, and R, are the amounts of space used

by the first, second, and result operands, respectively.

Outstanding temps are often linear functions of F, Sand R;

such as 2F+3R. Outstanding temps can sometimes be determined

syntactically. It is safe to assume that singletons take up

negligible space.

IF SPACE-EFFICIENCY

IF's are free to modify their source operands since

these are passed by value in APL@CRMS. (There would be no

reason to pass these operands by value if APL@CRMS contained

instructions to index the r th element of any APL variable,

independent of dimensionality. If such instructions existed,

the operands could be passed by reference, instead, since they

need never be modified by IF's. The SPACE-EFFICIENCY affect

of the proposed instructions is mentioned later.) In

practice, these modifications always yield variables of

approximately the same size as the passed operands. This is

because the IF's ravel and reshape passed operands. Once an

operand has been ravelled or reshaped, the original operand is

discarded. The newly created variable effectively replaces

the original operand. Outstanding temps, however, will

momentarily grow by the amount of space required by the newly

created variable- We will assume for now anyway, that no

manipulation is performed in-place.

- -- ------- ---

Section 11: Dyadic SE/ IF Efficiency Page 40

We will find the outstanding temps for each IF stage,

then compute max temps.

Step[l]: Check shapes for conformability.

= negligible).

(Outstanding temps

Step[2]: Dispatch to one of four Cases:--

Step [3 J :

Case[A] Generate "RANK ERRORM or "LENGTH ERROR"
traps. Exit- No result is returned.
(Outstanding temps= negligible).

Case[B]
Step[)].

Both operands are singletons- Go to
(Outstanding temps= negligible).

Case[C] Both operands are identical non­
singleton arrays. Ravel the first operand into
a vector. Then ravel the second operand into a
vector. Go to Step [3]. (Outstanding temps =
F=S=MAX(F,S), since each original operand is
discarded soon after it is ravelled-)

Case[D] One operand is singleton, the other is
not- Ravel the non-singleton- Go to Step[)].
(Outstanding temps= R).

Exit if empty result• Initialize the loop counter.

Index an element from neither, one, or both vectors

depending on whether both, one, or neither source

operands are singletons, respectively. Perform an

Element Iteration- Store into an element of the

result. Update then test the loop counter.

Conditionally branch back. (Outstanding temps =

negligible, since all values are scalar.)

Step[4]: Reshape the result• Exit- (Outstanding temps - R).

Section 11: Dyadic SE/ IF Efficiency Page 41

Max temps~ MAX(R, MAX(F,S)) = MAX(F,SJ. 20

both

But, when Case[CJ or Case[D] is entered because one or

non-singleton operand is a vector, a sufficiently

observant IF can reduce max temps to negligible, since nothing

must be ravelled--as in Case[CJ or Case[DJ--or reshaped 21

as in Step[4J. In fact, the only time max temps has to be as

large as MAX(F,S) is when at least one non-singleton source

operand has a rank of at least two. This happens very rarely.

(Max temps would always be negligable if the proposed index

instructions existed.)

SE SPACE-EFFICIENCY

Scalar Instructions used in SE's implicitly use the

microcoded dynamic storage allocator to acquire space for

their result operands ■ Scalar instructions also implicitly

use the dynamic storage de-allocator to free space held by

source operands, but only if they were unassignea 22

20usually, R = MAX(F,S). The exception, R = MIN(F,S),
will sometimes occur when one source operand is an empty
array, and the other is a singleton ■ The exception occurs
rarely, and when it does, the difference between F and Sis
small ■

21The APL@CRMS microprogram could easily be changed so
.that all no-op reshapes, at least on vectors, are performed
in-place ■ At my urging, the microprogram was changed to ravel
a vector in-place ■

22The APL@CRMS microprogram uses reference counts to
track how many variables are assigned to the same data.

keep

Section 11: Dyadic SE/ IF Efficiency Page 42

temporaries. Source operand space is freed only after the

scalar instruction's result operand has been allocated and

completely computed. Thus, all source and result operands

must be simultaneously allocated, briefly. Consider, for

example, the real-time space requirements for this SE:

F + s + F + F

& ORDER OF EXECUTION: 3 2 1

& SPACE FOR SOURCE OPERANDS: F+:R S+F F+F

& SPACE FOR RESULT OPERAND: :R R F

& OUTSTANDING TEMPS: :R+~ :R+Y p23

Max temps= MAX(:R+F,:R+R)

Parentheses imply stacking. This stacking can increase

max temps because the result of the last instruction is no

longer always released at the end of the next instruction-

(F + s) + F + F

& ORDER OF EXECUTION: 2 3 1

& SPACE FOR SOURCE OPERANDS: F+S lHF F+F

& SPACE FOR RESULT OPERAND: R R F

& OUTSTANDING TEMPS: R+F :R+i+y F

Max temps= R+R+F

In this example, inserting parentheses increased max temps.

23The slash-out means that the source operand's space is
to be released at the end of the current instruction.

Section 11: Dyadic SE/ IF Efficiency Page 43

Sometimes, however, inserting parentheses can decrease max

temps:

F+F+S

(F+F)+S

& max temps= R+R

& max temps= f+R

If F were a singleton, ands were a large array, the

parenthesized expression above would have lower max temps than

the unparenthesized expression.

Definition:--

To increase a SE's segregation means to delay the

intermixing of a SE's operands. As a SE becomes more

segregated, more of the intermediate results depend on

fewer and fewer source operands.

The second SE of the previous example is more segregated than

the first. The next subsection will point out other

advantages to segregating the first and second operands.

In conclusion:--

--Max temps for SE's, unlike IF's, are strong functions

of syntax.

--Most SE's, unlike most IF's, take considerably more

than negligible space for max temps.

--IF's, then, are generally more space-efficient than

their duals.

Section 11: Dyadic SE/ IF Efficiency Page 44

TIME-EFFICIENCY

IF's are generally less time-efficient than their duals.

This is mainly because:--

--SE's never ravel or reshape arrays.

--Microcoded loops are by far faster than software

loops.

--The number of elements processed in each microcoded

loop, unlike an IF loop, is not necessarily as large

as the number of elements in the final result: An

SE's intermediate results may be smaller than its

final result. This very important concept can be

exploited by segregating the operands of non-monadic

SE's. For example, if A or B, but not both are

singletons, and neither are empty,

(A+AxA) + (B+BxB) & is faster than

A+B + (AxA) + (BxB)

especially when A is singleton, and Bis a monstrous

array.

The APL@CRMS implementation of the dyadic "e" scalar

primitive (log to a base), is a SE that uses the monadic "e"

SE (natural log of):

1 xey & log, base X, of Y, is implemented as

(eY) • ex & which uses the natural logarithm,

& which is, in turn, a very large SE.

Section 11: Dyadic SE/ IF Efficiency Page 45

Not one scalar instruction's result--except for the result of

the last division--depends on both X and y.

The conclusion that SE's are more time-efficient than

their duals still leaves an important question unanswered: Are

SE's more time-efficient than IF's. The horizontal logic of

IF's may contain conditional pranches. Thus, it would appear

that SE's become less time-efficient with respect to IF's as

the amount of conditional logic increases. There is a hard­

to-define crossover point, but the APL@CRMS experience has

been that only one scalar function contains enough conditional

logic to justify being simulated horizontally aq an IF (for

solely time-efficiency reasons). That function is the

extremely complex Circular Function.

Section 12 Page 46

Conclusion

The vertical implementation has been covered much more

extensively than the horizontal implementation in this paper.

The horizontal implementation, however, is already well­

understood and heavily used, whereas the vertical

implementation is not. Vertical programming today is rare,

except perhaps on array processors and non-backup pipelined

processors. Yet,

expressions are both

it has

faster

equivalent horizontal loops.

been our experience that vertical

and clearer than functionally

This paper has been a qualitative study of various

aspects of the vertical and horizontal implementations of

scalar functions- As such, no single, unifying conclusion has

been reached. The various, somewhat-related conclusions which

were reached, however, can be relevant to a wide assortment of

professions.

Programmers, for example, should try to look upon the

vertical, array processing, programming style as a clear and

concise repre~entation.

Arithmetic-Unit developers may now be able to justify

special case logic to handle frequent multiplications by zero

or one.

APL implementers may attach new importance to agreeing

to a standard evaluation of pornographi~ expressions, since

multiple assignments can significantly reduce a vertical

_Section 12: Conclusion Page 47

program's complexity. Perhaps the APL@CRMS evaluation should

be the standard.

Array processor designers, who want to simplify vertical

programming, should design a "base set" of scalar instructions

which is as complete as possible, yet with a minimal number of

hard-to-anticipate properties.

Array processing compiler writers may see the need for

an optimizer which maximizes object code segregation by

rearranging scalar functions in expressions-

There are many unanswered questions related to this

study. A few of these questions which merit further research

are:

--How useful are scalar functions with three or more

operands? Are monadic and dyadic scalar functions

sufficient'?

--When should a scalar function be implemented as a

blend of the horizontal and vertical ·methods'? The

Circular Function is implemented this way.

--Why isn't it obvious when a set of scalar functions

is incomplete'? Why was it so hard to predict the

effect of the new, mixed array, data type?

	Table of Contents
	1. Introduction
	2. Definitions and Formalizations
	3. APL @CRMS Standards
	4. The APL@CRMS Scalar Instruction Set
	5. Some Nitty-Gritty Vertical Examples
	6. Two Advantages of Programming Vertically
	7. Two Useful Vertical Programming Tools
	8. The APL@CRMS SE Implementation
	9. Reducing the Scalar Instruction Set
	10. Three Scalar Expression Limitations
	11. Dyadic SE / IF Efficiency
	12. Conclusion

