Scalgr Functions:
An APL Analysis of the Vertical and Horizontal Implementations

By
Wiley Greiner

B.S. (University of California) 1974
THESIS

Submitted in partial satisfaction of the requirements for the degree of
MASTER OF SCIENCE
in

Engineering

in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

| Approved: z

Professor Rlchard M.

se 0000 s s 00 ® o000 000000

Robert S. Fabry, Chairman

9000000000

e

(EECS, IEOR)

Professor Austin C, Hoggqyg.jpp§}pg§s Administration)

Committee in Charge

SCALAR FUNCTIONS: AN APL ANALYSIS

OF THE VERTICAL AND HORIZONTAL IMPLEMENTATIONS

Wiley Greiner

Master of Science Electrical Engineering

and Computer SCi%ijﬁs
THESIS ABSTRACT SignatureX;;EE;E
June 1975 Thesis Committee Chairqez:

Plus, Minus, Modulo, Maximum and Nor are examples of
scalar functionse. If one or more operand is an array., a
scalar function performs an identical computation for each
element in the result, which is also an array-.

Array processors typically support a set of instructions
that act 1like scalar functions. These instructions can be
combined to simulate more complex scalar functions, without
looping. Alternatively, scalar functions can be simulated as
a program which loops once for each element of the array
result. These two simulation methods are named the vertical
and horizontal simulation methods, respectively.

Both methods have been used on an array processing APL
machine designed by the Center for Research in Management
Science, where the vertical simulation was found to be much
clearer to read and faster, but bulkier, than the horizontal
simulation, for most--but not all--scalar functions.

This discovery is one of many conclusions that may apply
to similar dynamically allocating array processors, including

the next generation of APL emulators.

ii

TABLE OF CONTENTS

le. Introduction 1

2. Definitions and Formalizations 4

SCALAR FUNCTIONS 4

ITERATING FUNCTIONS: THE HORIZONTAL IMPLEMENTATION
SCALAR EXPRESSIONS: THE VERTICAL IMPLEMENTATION 8
DUALITY AND FUNCTIONAL EQUIVALENCE 10

3. APL@CRMS Standards 12

4. The APL@CRMS Scalar Instruction Set 15

5. Some Nitty Vertical Examples 16

EXAMPLES OF THE VERTICAL STYLE 16

EXAMPLES OF SCALAR INSTRUCTION IDIOSYNCRACIES 17
EXAMPLES OF LOCALIZATION 19

EXAMPLES OF HNON-DISTRIBUTION 20

EXAMPLES OF NON-SIMULATION APPLICATIONS 21

6. Two Advantages of Programming Verticall 22

CLARITY 22
GENERALITY 23

1. Two Useful Vertical Programming Tools 24

MULTIPLYING BY A BINARY VALUE 24
MULTIPLE ASSIGNMENTS 25

iii

8. The APL CRMS Vertical Implementation 26

9. Reducing the Scalar Instruction Set 28

10. Three Scalar Expression Limitations 31'

A SCALAR INSTRUCTION SET THAT IS INCOMPLETE
A FUNCTION THAT IS NOT QUITE SCALAR 33
A SCALAR FUNCTION THAT IS TOO COMPLEX 36

1l1. Dvadic SE IF Efficienc 38

THE SCALAR OPERAND MICROCOSM 38
USEFUL TERMS 38

IF SPACE-EFFICIENCY 39

SE SPACE-EFFICIENCY 41
TIME-EFFICIENCY 44

12. Conclusion 46

iv

31

Section 1

Introduction

Many useful array manipulations--such as multiplying a
vector by a scalar to obtain a vector, and adding together two
matrices of the same shape to obtain a third--are called
scalar primitives. The APL computer language provides a large
collectipn of built-in scalar primitives. All scalar
primitives have one result, and at least one source operand.
The Ith element of .the result is computed using an element
from each source operand. If a source operand contains
exactly one element, then that element is used. Otherwise,
the ItP element is used. Comprehensive definitions will Dbe
presented when more key terms have been described.

The APL@CRMSl host machine? executes a set of
instructions, including Times and Plus, that act 1like scalar
primitives. These instructions are known as scalar
inétructions- Other instructions, such as branch and index,
do not act like scalar primitives. The Scalar Instruction Set
contains all scalar primitives that correspond to exactly one

machine instruction. The remaining scalar primitives are

1P. McJdones, C. Grant & W. Greiner, CRMS APL Processor
Manual, Center for Research in Management Science, University
of California, Berkeley (Revised May 30, 1974).

2The APL@CRMS host machine is microprogrammed to emulate
a subset of the APL language. For more information about this
machine, consult the Digital Scientific Corporation META 4

Computer System Microprogramming Reference Manual, publication
number 7043M0 (March 1972).

Section 1: 1Introduction Page 2

bootstrapped from more than one instruction. This paper
examines the two bootstrap methods used on the APLQ@CRMS
system: the horizontal and the vertical methods. The
horizontal method computes each element of the final result
(from start to finish) before beginning to compute the next
element of the final result. A program that adds a vector to
a scalar then multiplies the sum by another scalar, by looping
once for each element in thé vector, is an instance of the
horizontal method. The vertical method performs a single-
instruction operation on all intermediate results Dbefore
executing the next single-instruction operation. Adding a
vector to a scalar then multiplying this sum by another
scalar, using the Plus and Times scalar instructions; is an
instance of the vertical method. Here, the intermediate
result--a vector of sums--has a shape equal to the shape of
the final result. 1In general though, intermediate results may
have more, or less, elements than the final result.

One or more scalar instructions occur in each APL@CRMS
vertical implementation. These implementations take advantage
of the array processing features of scalar instructions.
Unfortunately, the existing vertical implementations are not
yet understood well enough to be systematicaily adapted for
any arbitrary scalar primitivee. Or, more to the point,
discovering a vertical implementation is a heuristic problem.
Yet many aspects of the vertical, array processing method are

beginning to be understood. The vertical method, because it

Section 1: 1Introduction Page 3

lacks conditional branching, should be of particular interest
to users of parallel and non-backup pipelined machines. This
paper compares interesting aspects of the vertical method to
similar aspects of a universally-adaptable, looping,
horizontal method. Dynamic storage allocation and
deallocation demands, relative execution speeds, program style
and clarity. user error detection, time- and space-efficiency.,
and both theoretical and practical limitations are among the
aspects compared. -

The APL community has 1long been aware of the array
processing features of one-line programs that use scalar
primitives. A 1971 APL reference manual,3 for example, spoke
of "programs that were originally expected to work on single
numbers, but which turn out to work just as well on vectors of
numbers. . «It 1isn’t clear how this can be done." Although
many APL references notice these powerful one-line programs,
few attempt to analyze the tradeoffs between non-looping
programs and looping programs that do the same thing. This

paper attempts one such analysis-.

3APL/360 Primer, IBM number GH20-0689-2, p. 110 (1971).
This primer 1is a second revision. Interestingly enough,
neither the original nor the first revision contain a similar
quotation.

Section 2 Page 4

Definitions and Formalizations

SCALAR FUNCTIONS

Scalar functions have one, two or more source operands,
and return exactly one result. This result is scalar only if

all source operands are scalars. The result is an array if

any source operand is an array. The shape4

5

of the result of
a monadic scalar function is the same as the shape of the
lone source operand. R, the shape of the result of a non-

monadic scalar function, depends on {Si: 1<i<N}, the shapes of

the N source operands. The four possibilities are:

i) If the set S’={Si: S, # singleton-shape},6 contains
one or more shape, ail of which are identical, then R
is the same as the shapes 1in {Si} that are not
singleton-shapes.

b) Otherwise, if S’ is the empty set, then R is the same
as the longest of the S; vectors.

’

c) Otherwise, if the lengths of any two vector members

4The shape of an APL variable is a vector of dimensions.
The shape of a 2 by 3 by 4 array, for example, is 2 3 4. The
shape of a scalar is the empty vector.

5Monadic means one source operande. Dyadic means two
source operands.

6Sinqleton-—shapes are vectors that contain only numeric
ones. Singletons are single element variables, such as
scalars, single element vectors, and 1 by 1 matrices.

Section 2: Definitions and Formalizations Page 5

of S° are unequal, then generate the "RANK ERROR"/
trap. No result is returned.

d) Otherwise, some elements in some vector members of S°
are unequal. Generate the "LENGTH ERROR" trap. No
result is returned. «

In summary:

R, the shape of the result:--

--depends on the shapes in {Si}. and not on the values
of the elements in the source operands.

--is the same as one or more shapes in {Si}.

--would be unchanged if the ordering of the operéhds
were rearranged.

Scalar functions:=--

--are never functions of less than one variable.

-=-give the illusion that identical logic is re-executed
once for each element of the result. (The actual
implementation is not required to follow the
illusion.)

Here is the Fundamental Criterion of Scalar Functions:--

--The result of a scalar function never depends on the
order 1in Wwhich the elements of the result are
computed.

In fact, the elements might as well be computed in parallel.
The Criterion will be invoked 1later to distinguish scalar

functions from the similar monadic "?2" function (Roll). The

Roll function generates pseudo-random positive integers,

7The rank of an APL variable is the number of dimensions
it has. Or, more precisely, an APL variable’s rank 1is the
shape of its shape. The ranks of a scalar, vector, matrix,
and N-dimensional array are 0, 1, 2, and N, respectively.

Section 2: Definitions and Formalizations Page 6

analogous to the "roll of the dice."

Scalar Qrihitives are defined as scalar functions that
happen to be APL language primitives. All scalar primitives
are either monadic or dyadic scalar functions. A Non-
Instruction Scalar Primitive is any scalar primitive which is
not functionally equivalent to one APL@CRMS instruction. Non-
Instruction Scalar Primitives are simulated with more than one
APL@CRMS instruction. These simulations must be careful to
generate the correct error trap whenever operands are outside
their domains. Curfently, two types of scalar function
simulations have been implemented on the APL@CRMS system: the
horizontal Iterating Function and the vertical Scalar

Expression simulations. They are described below.
ITERATING FUNCTIONS: THE HORIZONTAL IMPLE’MENTATION

The looping Iterating Function (IF) method re-executes

some logic once for each element of the resulte.
Definition:--

--An Element Iteration is the horizontal logic which is

computed once for each element of the result by an

Iterating Function. The result must be independent
of the order of iteration. This latter requirement
stems from the previously defined Fundamental

Criterion of Scalar Functions.

Section 2: Definitions

and Formalizations Page 7

The typical IF contains three parts: the front-end part, the

re-executing Element Ite

ration part, and the back-end part. A

front-end part for a monadic scalar function might look like:8

] S:=.SHAPE.X & S i
] X:=.RAVEL.X &

] I1:=.SHAPE.X & I i
] R:=X & Ini

The re-executing Element
"sign of" function--migh
] START: GOTO END IF
1 R[I]):=

] GOTO DONE 1IF
] R[I]:=0

] GOTO DONE 1IF
] R{I]:=-1

]

]

]

DONE: I:=I-1
GOTO START

And the back-end part mi
] R:=S5.RESHAPE

Notice how the above
determine whether the

Also notice that the

8Raw APL lines are
the 1left margin. If
everything to the right

9an array is empty
zero vectors and 2 by O
and matrices, respective

s the shape of the operand, X.

Ravel X into a vector.

s the length of this vector.
tialize the result, R.

Iteration part of the Signum--0Or

t look like:

I=0

& Assume positive.
X[I1>0

& Assume zero.
X[I1=0

& Necessarily negative.

ght look like:

R

IF performs a special test designed to

source operand 1is an empty9 arraye.

re-executing Element Iteration part

denoted by a right bracket, "]", on
an APL 1line contains an "&", then
of the leftmost "&" is commente.

if it contains no elements. Length
matrices are examples of empty vectors
ly. -

Section 2: Definitions and Formalizations Page 8

indexes into a ravelled10 version of the operand. The
operand had to be ravelled into a vector so that each element
could later be indexed, one at a time. The expense of front-
end ravelling and back-end reshaping could have been avoided
if APLECRMS contained an instruction that indexed the Ith
element of any APL variable, independent of its
dimensionality. Adding such an instruction to the APL@CRMS
non-scalar instruction set could improve IF time and space

efficiencies.
SCALAR EXPRESSIONS: THE VERTICAL IMPLEMENTATION

A Scalar Expression, unlike an Iterating Function, does
not loop-. In other words, a Scalar Expression is executed
once for each result, rather than once for each element of the
resulte. Scalar Expressions compute multiple element results
in just 'one pass due to the array processing nature of each
scalar instruction. Scalar instructions may internally11
invoke 1logic that is sequential, parallel, pipelined, or even

magical in nature. The internal logic is transparent to the

software programmer. Certain hardware designs may run faster

10The ravel of any N element APL variable returns an N
element APL vector. The N elements are stored in row-major
order (like PL/I, and unlike FORTRAN). Ravelling a scalar, a
2 by 3 matrix, and a vector returns a single element vector, a
six element vector, and an unchanged vector, respectively.

llAPL@CRMS scalar instructions invoke very fast microcoded
loops.

Section 2: Definitions and Formalizations Page 9

than others, but for our purposes, it does not matter that,
say, a particular sequential machine runs faster or slower

than another parallel machine.

Definitions:~--

--A S Scalar Expression, where S is a set of scalar
functions, 1is an APL expression that meets the
following syntactic qualifications:

1. Al]l of its function calls are to functions
in the set S, and

2. All of its constants are scalars.

--A scalar-bound variable is any variable that is known
to be a scalar: 1its rank is zero.

--A Monadic(Dyadic) S Scalar Expression is a S Scalar
Expression that contains exactly one(two) variablel(s)
that is(are) not scalar-bound.

If one understands the above definitions, the following

unproved assertions should be plausible:--

--A Monadic S Scalar Expression returns a monadic

scalar function of its only variable that 1is not
scalar-bound.

--A Dyadic S Scalar Expression returns a dyadic scalar

function of its two variables that are not scalar-
bound.

We will frequently refer to an APL@CRMS Scalar Instruction Set
Scalar Expressione. These seven words will be abbreviated as

SE.

Section 2: Definitions and Formalizations Page 10

DUALITY AND FUNCTIONAL EQUIVALENCE

Many languages besides APL support scalar functions.
APL, however, is one of the few languages thét would evaluate

an expression like
A:=(B+C)xD

vertically. If B, C and D are equally shaped arrays, then APL
must allocate storage‘for the intermediate result array, B+C.
Most other 1languages that suppért scalar functions, such as
ALGOL, PL/I, and some BASICs would evaluate the above
expression horizontally, as one implicit do-loop. In other
words, each element A[i] of the final result is computed, from

start to finish, before beginning to compute the next element.
Definitions:--

-=-The dual of a SE 1is an IF that executes the SE
horizontally as an Element Iteration: The SE is
evaluated, with scalar arguments, once for each

element of the result-
--The dual of the dual of a SE, is the SE itself.

Every SE has a dual. But not every IF has a dual, because an

IF’s Element Iteration need not conform to the constraints12

12Refer back to the definition of an S Scalar Expression,
given earlier in this section.

Section 2: Definitions and Formalizations A Page 11

that Scalar Expressions must conform to. If an Element
Iteration contains any conditional branching, then the Element
Iteration’s IF has no dual.

A SE and its dual are funétionally equivaient- Two
algorithms are said to be functionally equivalent if, whénever
they both compute results, the two results are equivalent.
However, when Dboth generate errors in lieu of results, these
errors need not be equivalent. This is because multiple user
errors may be detected in a different order, by the two
algorithms. Assume, for example, the existance of two
functionally equivalent simulations of the Divide scalar

primitive. The two might generate different errors for the

expression
] (1E730 6 9) + (1lE34 2 0) & which performs a scalar

division between two three-element vectors. Here, three
divisions must be computed, two of which contain user errors.
One simulation might try to compute 1ET30 # 1E34, and detect
an underflow error. A functionally equivalent simulation
might try to compute 9 + 0 first, instead, and detect a divide
by zero error-.

Also, if an algorithm successfully computes a result, .a
functionally equivalent algorithm might generate an error. A
SE may successfully compute a result, for example, while its
functionally equivalent dual generates the "NO MORE SPACE

LEFT" trap-.

Section 3 Page 12

APL@CRMS Standards

APL@CRMS supports the following scalar primitives, some of

which are Non-Instruction Scalar Primitives.

Dyadic:--

Monadic:--
No_Change
Change_Sign
Signum (sign of)
Reciprocal (1 divided by)
Exponential (e raised to)
Logarithm (natural log of)
~Ceiling (least int not <)
Floor (greatest int not >)
Magnitude (absolute value of)
Factorial (gamma function of)
Pi_Times
Not
ID (internal type of)
Translate (convert between types)

Plus

Minus

Times

Divide

Power (raise to a power)
Logarithm (log to a base)

Maximum

Minimum

Residue (similar to remainder)
Combinations (complete beta function)
Circle (sin, cos:, tan,

(arcsin, arccos, arctan,
(sinh, cosh, tanh,

(arcsinh, arccosh. . .)
And

Or

Nand

Nor

Less_Than
Not_Greater
Equal
Not_Less
Greater
Not_Equal

Section 3: APL@CRMS Standards _ Page 13

An early design goal of APL@CRMS was to be similar to
APL\360. APL\360 at the time was the dominant APL
implementation. So, it was felt APL@ECRMS programmers would
probably have had prior APL\360 experience.

There are many differencesl3 between the APL\360 and
the APL@CRMS implementations, however. The two were designed
for different purposes: APL@CRMS was designed primarily ' to
run extremely interactive management sciedce experiments:;
APL\360 wasn’t. APLECRMS is almost a decade newer. It
incorporates never hardware technoloéies and software
strategies; Yet, most of the differences appear so' well
thought out that studies, such as this, performed on APL@CRMS
should apply to existing APL implementations, as well as
future implementations now on the drawing board.

A few of the differences affect scalar functions,
indirectly. One such difference is a new data-type. Mixed
arrays, which existed in the earliest description of APL,14
are arrays that contain both numbers and characters. APL\360
does not support mixed arrays. whereas APL@CRMS does. Special
scalar primitives exist in APL@CRMS for manipulating mixed
arrays. These primitives comprise the set of mixed scalar

primitives. This set never existed on APL\360. APL@CRMS was

13y4. Greiner, APL@CRMS Users Guide, Center for Research in
Management Science, University of California, Berkeley (To Be
Published).

14K. E. Iverson, A_Prodqramming Lanquage (1962).

Section 3: APLQ@CRMS Standards Page 14

required to establish standards for the handling of mixéd
arrays:, through trial and error. It now appears that the set
of mixed scalar primitives, as cufrently implemented 1is
incomplete. The issue of completeness will be discussed
further in the subsection, "A SCALAR INSTRUCTION SET THAT IS
NOT COMPLETE."

Expressions which <contain more than one assignment

symbol (":=") are called pornographic. Some APL

implementations evaluate some pornographic expressions in a
hard-to-anticipate manner. APL@CRMS, however, always
evaluates these expressions according to a straightforward,
predictable rule: all multiple assignments are evaluated in

‘strict, right-to-left, order. Thus, the expression
] ((A:=2)+A)+A:=1 & for example,

returns 4, in APL@CRMS. The same expression might return 5 or
6 on some IBM-based APL implementations, such as .APL.SV.,
APL*PLUS, and PCS\APL. The subsection, "MULTIPLE
ASSIGNMENTS," discusses some reasons for using expressions

that contain more than one assignment symbol.

Section 4 Page 15

The APLQ@CRMS Scalar Instruction Set:

] .ID.Y & (ID) Returns 1 if Y is numeric, 0 if character.

] <TRANS.Y & (Translate) Converts from character to integer,

] & and integer to character. The "DOMAIN ERROR"

] & 1s generated if Y is numeric, but not an

] & 1integer between 0 and 255.

] X=Y & (Equals) Returns l(true) or 0O(false). See below

] & for traps that may occur when X and Y are numerice.

] & All following instructions will generate the "TYPE ERROR"
] & 1if any element of their operand(s) is non-numeric.

] +Y & Returns Y.
] -y & (Change_Sign) Returns Y subtracted from O.
] «.FLOOR.Y & Returns the greatest integer not greater than Y.

] .CEILING.Y & Returns the least integer not less than Y.

1|y & (Magnitude) Returns the greater of Y and -Y.

] X+Y & (Plus) Dyadic + - x +#+ < and = may generate the

] X=Y & (Minus) "“FLOATING POINT OVERFLOW ERROR," or the

] XxY . & (Times) "FLOATING POINT UNDERFLOW ERROR" traps-.

] X#Y & (Divide) May generate the "DIVIDE BY ZERO ERROﬁ."
| D €94 & (Less_Than)

] & All following instructions will generate the "DOMAIN ERROR"
] & if any element of any operand is non-binary.

] -y & (Not)
] X.AND.Y & (And)
] X.OR.Y & (Or)

A goal of the APL@CRMS Scalar Instruction Set 1is to
detect wuser errors very soon after they occur, so as to

minimize error propogation.

Section 5 Page 16

Some Nitty-Gritty Vertical Examples

EXAMPLES OF THE VERTICAL STYLE

Vertical programs do not look like horizontal programse.
Their styles are different. Good vertical programs often seem
hideously inefficient and sloppy to someone with only
horizontal experience. Since vertical programs are not vYet
commonplace, this section will go over a few SE examples.
These examples will be drawn from scalar primitives, whenever
possible.

A few Non-Instruction Scalar Primitives have very

obvious SE’‘s:

] Y & (Reciprocal) is the 1.0+#Y SE.

] X#Y & (Not_Equal) is the -X=Y SE.1?>

] X>Y & (Greater) is the Y<X SE.

] XY & (Not_Greater) is the (X<Y).OR.X=Y SE.
] oY & (Pi_Times) is the 3.14159265xY SE.

Most Non-Instruction Scalar Primitives, however, have

somewhat less obvious SE’s. The dyadic "|" scalar primitive

(Residue), for instance, is defined as follows:1®

15APL expressions are always evaluated right-to-left,
except that parentheses behave in the usual way. Aside from
this rule, there are no operator precedence rules, whatsoever.

16AIB in APL is similar to B modulo A, the remainder of B
divided by A.

Section 5: Some Nitty-Gritty Vertical Examples Page 17

] A|B & for A#0, is B-(|A)x.FLOOR.B+|A

] ' & for A=0 and B>0, is B

] & for A=0 and B<0, generates the "DIVIDE BY
] & ZERO ERROR" trap.

In APL@CRMS, Residue is implemented as one SE which covers all

three cases:

] X|Y & is the Y-(|X)x.FLOOR.Y# |X+(Y<0)<X=0 SE.

This tricky code 1is necessary because vertical programs may

not contain conditional branches.

EXAMPLES OF INSTRUCTION IDIOSYNCRACIES

The monadic "x" scalar primitive (Signum) also has three

cases. If the source operand is positive, negative, or zero,
monadic "x" returns 1, "1, or 0, respectively.
] xY & (Signum) is the (0<Y)-Y<0 SE.

The Signum SE is well-defined for all values of Y 1largely
because of this very important characteristic of the + - x + <
and = scalar instructions: None will give inaccurate results,
or dgenerate the unexpected "FLOATING POINT OVERFLOW ERROR" or
"FLOATING POINT UNDERFLOW ERROR" traps if either source
operand 1is zero. Unfortunately, there can be messy roundoff

and other problems if both operands are nonzero:

] X.MAX.Y & (Maximum) is the X+(Y-X)xX<Y SE, or is it??

Section 5: Some Nitty-Gritty Vertical Examples Page 18

The answer is "no," since:--

--for a very negative X and a small Y, say X=-1E30 and
Y=2, the subexpression (Y-X) returns -X, due to a
common roundoff idiosyncracy. And, at Dest, zero is

only “close to" (-1E30).MAX.2.

--for a very negative X and a very positive Y, and
vice-versa, the subexpression (Y-X) generates the
"FLOATING POINT OVERFLOW ERROR" trap, which is never

an appropriate trap for X.MAX.Y.

A better simulation of
] X.MAX.Y & is the (YxX<Y)+Xx-X<Y SE.

Sometimes even this SE generates an unexpected error. When X
and Y are sufficiently close together, but not equal, X«<Y
generates the "FLOATING POINT UNDERFLOW ERROR" trap- X<Y in
microcode computes X-Y, which <c¢an cause underflow problems
because APL@CRMS does not support unnormalized floating point
numbers. The problem, as numerical analysts know, lies with
the "<" scalar instruction. However, any microprogram patch
that corrects the "<" problem implicitly fixes the ".MAX."
problem, too. This example suggests a prudent precaution:
Since the characteristics of one scalar instruction may have a
strong influence upon the characteristics of many SE’s, all

hard-to-anticipate idiosyncracies should be removed from

Section 5: Some Nitty-Gritty Vertical Examples Page 19

scalar instructions. (Many hard-to-anticipate arithmetic
idiosyncracies in APL@CRMS could easily have been eliminated
early in the design by heeding the advice of a competent
numerical analyst.)

These idiosyncracies tend to affect vertical programs
more than horizontal programs. This is because the latter may
conditionally branch around special <case code whenever an
operand is out of bounds. Thus, in the latter, the programmer
need only test his code between narrow programmer-defined
bounds. Special case vertical code, on the other hand, could
conceivably be required to process any operand value,

whatsoever.
EXAMPLES OF LOCALIZATION

If both X and Y were singletons, the double evaluation
of X<Y by the above Maximum SE would be trivial. But, since X

or Y may be monstrous arrays., a viable alternative for

] X.MAX.Y & is the (YXTEMP)+Xx-TEMP:=X<Y SE,

] & followed by FREE(TEMP).

SE°s defined from now on may contain the Maximum

primitive even though Maximum does not belong to the APL@CRMS

Scalar Instruction Set. This 1s because the notation,
".MAX.", may be considered an abbreviation of the Maximum SE.

The abbreviation principle applies to all SE simulations, and

not just the Maximum SE.

Section 5: Some Nitty-Gritty Vertical Examples | Page 20

EXAMPLES OF NON-DISTRIBUTION -

Many mathematical Non-Instruction Scalar Primitives
evaluate a fixed number of terms in one of’ many selectable
series. The series selected depends on the source operand, X;'
Series lyvfor example, would be used if 0<X<l1l; while serieS'Z‘
would be used if 1<X<3.14159; and so-on. This logic could be
implemented as the SE: .

(SER1x(0<X).AND.X<1) + (SER2xX(1<X).AND.X<3.14159) + ...
Most of the time, the first few operations of SER1l, SER2 ,
etc., are identical. _ Then, too,. a few series may share
- operations that are not shared by all the series. The better-
written mathematical SE’s tend not to distribute
multiplication over addition. A non-distributive éE might'

look like:

SER_START + (SER_MID1+(SER_END11X...) + SER_END12X...)
+ (SER_MID2+(SER_END21xX...) + SER_END22X.+..)

+ e o0

Not distributing multiplication over addition increases SE
time«efficieney by reducing the number of scalar instructions

executed. More will be said about the strong relationship
between SE syntax and SE efficiency in the “SE SPACE-

EFFICIENCY" and the "TIME-EFFICIENCY" subsections.

Section 5: Some Nitty-Gritty Vertical Examples Page 21

EXAMPLES OF NON-SIMULATION APPLICATIONS

SE‘s have many applications in additon to simulating
Non-Instruction Scalar Primitives. Recall that all SE’s
return scalar functions.

The "convert small letter into capital letter" monadic
scalar function could be simulated as the following SE:

P is the operand of the "convert small letter
into capital letter" scalar function.
Integer SMALL is the scalar constant .TRANS."a’ .

Integer DIFF is the constant (.TRANS.‘A°)-.TRANS.a’ .
TRANS. CP + DIFFx(SMALL<ZCP).AND.(CP:=.TRANS.P)<26+SMALL

) vt Ced Ced vomd
R R

o

This SE assumes that the character codes for small ‘a’ through
small ‘z° are contiguous, as are the codes for <capital ‘A’
through capital °‘z2°. The next “convert small letter into

capital letter"” SE makes no such continuity assumptions:

.TRANS. CP + (((.TRANS.’A’)-.TRANS.’a’) x CP=.TRANS."a’)

+

(((-TRANS.’B")=.TRANS. b’) x CP=.TRANS. b’)

+

(((.TRANS.’C’)=-.TRANS. c’) x CP=.TRANS.'c’) . . .

+((.TRANS. Z°)-.TRANS. 2z’)x(CP:=.TRANS.P)=.TRANS. 2"

SE’s that contain a large amount of conditional logic tend to
be 1long. But fortunately these SE’s can be very easy to

program, as the next sections will show.

Section 6 Page 22

Two Advantages of Programming Vertically

CLARITY

Most people prefer to program horizontally. Perhaps

vertical programs seem too complicated, since vertical
instructions sometimes process large arrays; whereas
horizontal instructions work with simple scalars, only. And,
many people believe that array programming is less natural for
human beings than sequential programming. This belief cannot
always withstand scrutiny. Let’ s 1look at the problem of
adding two equally shaped vectors, X and Y, placing the vector
of sums in 2. Here is one horizontal approach, using FORTRAN:
9 DO 10 I=1,N
10 Z(I)=X(I)+Y (1)
I doubt whether DO-LOOP syntax looks natural to the novice.
Furthermore, the above DO-LOOP solves only part of the
problem. N, the length of X, 1is not given. Z must Dbe
stétically dimensioned for the worst case, since FORTRAN does
not support a dynamic storage allocator. A better example of
the horizontal approach 1is the following APL program, which
implicitly uses APL’s dynamic storage allocator:

Z?=X & 2 and X have the same shape.

I:=.SHAPE.X & I becomes the shape of X.

LOOP: EXIT IF I=0

Z[I]:=X[TI]14Y(I]

I:=I-1
GOTO LOOP

L S

Section 6: Two Advantages of Programming Vertically Page 23

Now, contrast the naturalness of the above example with that

of the vertical approach using APL:
] Z:=X+Y

The addition of vectors problem 1is one of many scalar
functions that can be stated more clearly vertically than
horizontally. Horizontal programs, at 1least in APL, are
notoriously unreadable; whereas vertical programs can be

extremely clear and concise.
GENERALITY

Scalar Expressions offer many programming conveniences
not found in conventional, horizontal programs. Since Scalar
Expressioné are unaware of the shapes of their operands., the
Scalar Expression programmer is not responsible for ravelling
or reshéping arrays, or looping, or incrementing and testing
nested counters. Scalar Expressions are never written to work
on an operand with a specific shape: instead, they are always
written to handle the more general case of any operand shape,
whatsoever. And, Scalar Expressions have a surprisingly wide
range of applications. 1In fact, virtually all the APLG@CRMS

scalar primitives have already been implemented as SE’s.

Section 7 Page 24

Two Useful Vertical Programming Tools

Unfortunately, SE programming usually takes considerable
thought. I hope that Scalar Expression programming eventually
will become more standard, and less of an art. With this goal
in mind, let me 1list two Scalar Expression programming

techniques.
MULTIPLYING BY A BINARY VALUE

Conditional branching can be approximated by summing up
a series of products, each consisting of a term multiplied by
the binary (1 or 0) result of a relational subexpression.
Multiplying a term by a binary value yields either the term
itself or zero. This technique makes the monadic "x" SE very
trivial to derive.

] xY & is (1x0<Y) + (T1xy<0) + 0xY=0
] & which can be simplified into (0<Y)-Y<O0

It is easy to conditionally induce errors, as in

] EXPR + (-1+B<0) + -1+3.1415926<B

which generates the "bOMAIN ERROR" trap unless every element
in B is between zero and Pi. (The domain of the "-" primitive
is the set {0,1}).

The dJdisadvantages of this technique stem from the fact
that certain intermediate results--those with no bearing on
the final result--are computed first, then multiplied by zero.
Two of the disadvantages are (1) inefficiency caused by

performing needless computation, and (2) ' hard-to-anticipate

Section 7: Two Useful SE Programming Tools Page 25

errors which occur because no portion of a SE may be

conditionally bypassed when operands are out of bounds.

MULTIPLE ASSIGNMENTS

Multiple statements can be approximated with multiple
assignments. Althdugh multiple assignments are never
necessary, they can significantly reduce SE complexity. Take,
for example, the problem of raising X to the non-negative
integral power P, Dby performing up to Pmax successive
multiplications. Normally, the SE complexity grows by
Order (Pmax) . But, thiough multiple assignments. the SE
complexity grows by only Order(log Pmax). (For «clarity, the
multiple assignment SE is represented as a sequence of smaller
SE’s, one per line):

L:i=(LxY:=X) + -L:=(I+I:=.FLOOR.P+2)<pP
& preyious line handles Pmax=2-1=1

Li=((LxY:=YxY) + ~L:=(I+1:=.FLOOR.I#2)<I))xL
& previous line handles Pmax=4-1=3

& next line handles Pmax=8-1=7
L:e=((LxY:=YxY) + -L:=(I+1:=.FLOOR.I#2)<I))XxL

it et et St St Nt Smd

Adding on N more lines exactly like the last pushes Pmax to
2N+3°l-

Unfortunately, all multiple assignment SE’s are
pornographic, and so may evaluate unpredictably on certain

IBM-based APL implementations.

Section 8 Page 26

The APLQECRMS SE Implementation

Almost all Non-Instruction Scalar Primitives have been
implemented, in APL@CRMS, as SE‘s. The smaller SE primitives
are installed as in-line macros, which are "called"
immediately after their operands are pushed onto the stack.
There are three temporary variables, which are global and are
provided for the exclusive use of in-line macros. These
variables are not accessable to the problem program. They
are, however, available to the debugging programmer. In-line
macros which assign values to temporary variables must
explicitly FREE these variables, before "returning." This
makes temporary variables appear to be 1local. In practice,
temporary variables are used to memorize operands before they
have been popped from the stack. The monadic "x" macro

(Signum or (0<Y)-Y<0), for example, is:

(a) ASSIGN TEMP1 (copy top of stack to TEMP1)
(b) PUSH numeric 0 (onto top of stack)

(c) INTERCHANGE (top 2 slots on stack)

(4d) LESS_THAN (replace top 2 slots with <)
(e) PUSH TEMP1 fonto top of stack)

(£) PUSH numeric O
(g) LESS_THAN
(h) SUBTRACT (result is now on top of stack)

(1) FREE TEMP1 (localize TEMP1)

Section 8: The APL@CRMS SE Implementation Page 27

The larger SE primitives are installed as calls to APL@CRMS
RUNTIME functions. The Call non-scalar instruction instructs
the microprogram to add a new frame on the stack, update a few
state words, and initialize any local variables. The Return
instruction reverses the process, and implicitly de=-allocates
all local variables.
Compared with the RUNTIME installation of SE primitives,
the macro installation is
--faster because there are no Call or Return
instructions executed.
--bulkier because the macros usually expand into more

code than that of a single Call instruction.

Section 9 Page 28

Reducing the Scalar Instruction Set

The APL@CRMS Scalar Instruction Set can be reduced from
what is currently supported without 1losing any functional

properties.
Definition:--

--A set SS of scalar functions is a Reduced Set if all

functions in the APL@CRMS Scalar Instruction Set can

be simulated by SS Scalar Expressionse.

The APL@CRMS Scalar Instruction Set 1is a Reduced Set, by
definition. A more interesting Reduced Set, SS, is

SS = {.TRANS., =, .CEILING., dyadic -, X, %, <, -}
Notice that every function in SS also appears in the APL@CRMS
Scalar 1Instruction Set, although this is not a prerequisite
for SS to be a Reduced Set. We must show that all functions
in the APL CRMS 1Instruction Set, but not in SS, can be

simulated by SS Scalar Expressions.

] .ID.Y & is the 1-(Y="a’)-0-(Y="b")...-(¥="2") sE.17
] & (There are 256 APLQ@CRMS character codes.)

] 4y & is the 0-0-Y SE.

] -y & is the 0-Y SE.

] «FLOOR.Y & is the 0-.CEILING.0-Y SE.

17a11 SS Scalar Expressions are also SE’s, since SS 1is a
subset of the APLQ@CRMS Scalar Instruction Set.

Section 9: Reducing the Scalar Instruction Set Page 29

] Y & (Magnitude) is the Yx1-2xY<0 SE.

] X+Y & is the X-0-Y SE.

] X.0R.Y is the -~(--X)<-Y SE. The double negation

] & generates "DOMAIN ERROR," when appropriate.
] X.AND.Y & is the (-X)<--Y SE.

If APL@CRMS numbers were represented in two’s complement

form,18

then the 0-0-Y SE would not correctly simulate
monadic "+" for all values of Y.

There may be SE’s which simulate Times, without using
the "x" scalar instruction. Due to the finite precision of
"x" and "+", the X+l+#Y SE does not correctly simulate "x" for
all values of X and Y. One case in éoint is ¥Y=0.

The "+" primitive cannot be simulated by §§-("*“} Scalar
Expressions because "+" is the only function in SS capable of
generating the "DIVIDE BY ZERO ERROR" trap. But, the "."
primitive can easily be simulated by a SS-{"-"} Scalar

Expression. Translate can generate the "DOMAIN ERROR" trap,

which is a necessary part of the Not simulation.

SS would still be a Reduced Set if certain pairs of
functions were replaced by siggle} new functionse. But the
above examples should serve to caution Scalar Expression

programmers to pay very careful attention to the

18The set of two’s complement numbers is not closed under
the Change_Sign function. This is because a two’s complement
number, N, is equal to 1+BITWISE_COMPLEMENT_OF(-N).

Section 9: Reducing the Scalar Instruction Set Page 30

idiosyncracies of both the simulated and the simulating

functions.

] & Replace = and < with <. Now, define

] X=Y & as the (X<Y)xY¥<X SS Scalar Expression, and
] X<y & as the (X<Y)x-Y<X SS Scalar Expression.

Unfortunately both definitions are incorrect when X and/or Y
contain characters. To be more precise, the "=" and "<" SS

Scalar Expressions violate two rules:--

--that X=Y must return 0 when X or ¥, but not both, 1is

character, and

--that X<Y must generate the “TYPE ERROR" trap when X

and/or Y is character.

A more suitable building block than "<" is "=", where

] X=Y & returns 1 if ¥X=Y. Otherwise, it

] & returns 0 if X and/or Y is character and X#Y.
] & If neither applies, X<Y is returned. Now,

] X=Y & becomes the (X=Y)xY=<X SS Scalar Expression.

] X<Y & becomes (X=xY)x-Y=xX-Y-Y SS Scalar Expression.

The extra subtractions generate the necessary "TYPE ERROR"

when one or both operands of "<" is character.

The following transformation of a Reduced Set yields
another Reduced Set: Replace all monadic functions with one

dvadic function that dispatches on its left operand.

Section 10 Page 31

Three Scalar Expression Limitations

A SCALAR INSTRUCTION SET THAT IS INCOMPLETE

A small number of functions that can be simulated by
Iterating Functions apparently cannot be simulated by any
APL@CRMS Scalar Instruction Set Scalar Expressione. This
appears to be caused by minor oversights in the selection of
the APL@CRMS "base set" of scalar instructions. One example
appears to be the "translate right operand if the left operand
is zero(false), else pass right operand unchanged" dyadic
scalar function. This function, which will be called
Translate2 and be denoted as ".TRANS2.", could be added to
both the APL@CRMS Scalar Instruction Set and to the set of
mixed scalar primitives, and perhaps should be. The addition
would make it possible to implement many functions as SE’s
which cannot now be implemented as SE’s. One such function is
discussed in the next paragraph-.

As was earlier mentioned, APL 360 does not permit arrays
to contain both numbers and characters. APL@CRMS on the other
hand, does permit these mixed arrays. Unfortunately the
APLQ@CRMS Scalar Instruction Set was developed without
sufficiently considering what scalar functions should be
provided to act on mixed arrays. All newly considered scalar
functions must therefore be implemented as SE°s or 1IF’s.
Usually, the IF implementation is almost trivial:; whereas the

SE implementation is next to impossible.

Section 10: Three Scalar Expression Limitations Page 32

Consider the dyadic scalar function called Add2, defined
as follows: The left operand, L, must be numeric; the right
operand, R, may be numeric or character; RESULT is the sum of
L and R if R is numeric, otherwise RESULT is the character 1in

R.

] 1 .ADD2. ‘I=’ 5 & for example,

would return the three element mixed vector, ‘I="6. And,
] (001 17.3 2) .ADD2. “2x" 3 =" 6

would return the five element mixed vector, “2x°4°=°8. Add2
is easy to implement as an IF. The Element Iteration might

look 1like:

] RESULT: =L
] EXIT IF -.ID.L & Exit if character.
] RESULT: =L+R & Else compute sume.

Because of the conditional exit, this IF has no dual. 1In
fact, I doubt that Add2 can be implemented as any SE. Add2
can be implemented, however, as the following Scalar

Instruction Set union Translate2 Scalar Expression:

] T.TRANS2. (TxL) + (T:=.ID.R).TRANSZ2.R

Add2 is one of many scalar functions .which probably should be
made available to act on mixed arrays. Other similar

functions are Minus2, Times2, Power2, Logarithm2, and

Section 10: Three Scalar Expression Limitations Page 33

Maximum2. None of these appear to be implementable as SE’s.
All can be implemented as IF°s, trivially. And, all could be

implemented as SE’s if the Scalar Instruction Set included

Translate2.
A FUNCTION THAT IS NOT QUITE SCALAR

Consider the monadic "?" primitive (Roll):
] R:=2Y & assigns to R the Roll of Y.
Each element in Y must be a positive integer. R has the same
shape as Y, and each element in R is a pseudo-random integer
between one and the corresponding element in Y. For example,
] 210 10 2 & might return the vector 6 1 2.
To the casual observer, monadic "?2" 1looks 1like a scalar
function. But, easily unnoticed Dby the casual observer is
what will be called the "rule of repeatable pseudo-random
number qénerators." Namely, the next usage of the generator
accesses a so-called seed, which was set during the last
usage. Thus, the elements in the result of monadic "?" cannot
be computed in parallel, but must be computed one-by-one, and
in some proper sequence.19

Monadic "?" cannot Dbe simulated by any Scalar

Expression. A formal Jjustification of this statement must

1914 APL@CRMS, the monadic "?" sequence is right-to-left.
The expression, "?3 4", for example, first processes the 4
(and sets the seed), then accesses the seed while processing
the 3. Thus, for any vectors A and B, "?A,B" is functionally
identical to "(?A),2?B".

Section 10: Three Scalar Expression Limitations Page 34

wait until after the <concepts of multiple- and single-

instruction Element Iterations are introduced.

C FORTRAN~-IZED EXAMPLE OF AN ELEMENT ITERATION.

DO 10 I e 1,N

TI=C(I)-D(I)
10 A(I)=B(I)+TI1
The "I e 1,N" notation means the programmer is convinced the
result, A, is independent of the order of iteration.

An Element Iteration, like the above example, only with
more than one APL@CRMS scalar instruction per loop is called a
multiple-instruction Element Iteration. Element Iterations
with exactly one such instruction per loop are called single-

instruction Element Iterations.
Assertions:--

—-Each function in the APL@CRMS Scalar Instruction Set
performs a single-instruction Element Iteration,

internally.

--All Scalar Expressions are functionally equivalent to
a permutation of single-instruction Element
Iterations. And, all permutations of single-
instruction Element Iterations are functionally

equivalent to a Scalar Expression.

Section 10: Three Scalar Expression Limitations Page 35

C FORTRAN-IZED EXAMPLE OF A PERMUTATION
C OF SINGLE-INSTRUCTION ELEMENT ITERATIONS.

20 T(I)=C(I)-D(I)

DO 30 I e 1,N
30 A(I)=B(I)+T(I)
Notice the temporary, T. This large vector was missing from
the previous example. Single-instruction Element Iterations
almost always require more temporary storage than functionally

equivalent multiple-instruction Element Iterations.

The previously mentioned "2" function cannot be
simulated by any Element Iteration due to the "rule of
repeatable pseudo-random number generators": The result of
the Roll function 1is dependent upon the order in which the
elements of the result are computed. Thus, the Roll function
cannot be simulated by any Iterating Function (or by any
Scalar Expression, which goes without saying). Indeed, Roll
is not a scalar function at all, since it violates the

previously defined Fundamental Criterion of Scalar Functions.

Section 10: Three Scalar Expression Limitations Page 36

A SCALAR FUNCTION THAT IS TOO COMPLEX

The dyadic "o" scalar primitive (Circular Function) 1is

defined as follows:

] XoY & is Tanh Y if X=7
] & Cosh Y if X=6
] & Sinh Y if X=5
] & Sqrt 14Yxy | if X=4
] & Tan Y if X=3
] & Cos Y if X=2
] & Sin Y if X=1
] & Sgrt 1-YxY if X=0
] & Arc Sin Y if X=-1
] & Arc Cos Y if X=-2
] & Arc Tan Y if X=-3
| ’ & Sart (=1)+¥YxY if X=-4
] & Arc Sinh Y if X=-5
] & Arc Cosh Y if X=-6
] & Arc Tanh Y if X=-7
] & "DOMAIN ERROR" otherwise

The APL@CRMS implementation of Circular Function is sort
of a hybrid between the Iterating Function and Scalar
Expression methods. The Circular Function implementation

currently has a front-end which dispatches to:--

Section 10: Three Scalar Expression Limitations Page 37

--The 8+Xth SE, if X is a singleton integer between -7

and +7, or

--The Circular Function Iterating Function, if X is

non-singleton, or
--The "DOMAIN ERROR" trap generator, otherwise.

Thus, taking the SIN of an entire array.
] 10ARRAY

causes a dispatch to the SINM, or the 8+1 = 9th. SE.

At an earlier time, the circular function was
implemented as one very long SE:, which employed the previously
discussed SE conditional branch approximation-. This SE was
unpardonably inefficient, both time-wise, and space-wise. The
time-inefficiency was no surprise, but the space-inefficiency

certainly was!!

Section 11 Page 38

Dyadic SE / IF Efficiency

Monadic scalar functions are not treated separately 1in
this section because they may be thought of as special cases
of dyadic scalar functions: the case where the 1left operand
is a 'scalar constant. So, many of the conclusions which will
be reached about dyadic SE’s and IF’s apply to monadic SE’s
and 1IF°s, too. We will be very interested in the relative

efficiencies of SE’s and their duals.

THE SCALAR OPERAND MICROCOSM

Before tackling the more general <case, 1let’s consider
the restricted <case of scalar—-bound source operands. Here,
all SE intermediate results are scalars. The same can be said
for all IF intermediate results, too. The space required for
both implementations is equivalent, although negligible. The
APL@CRMS 1IF implementation, however, necessarily takes more
time than its dual, due to the overhead of the IF front-end

and back-end parts.

USEFUL TERMS

The phrase, outstanding temps, denotes the maximum
amount of space, in words, allocated during a given stage of
SE or 1IF evaluation. Outstanding temps does not include space
used for the source operands, as these must be allocated under

any algorithm. The phrase, max _temps, is MAX(outstanding

Section 11: Dyadic SE / IF Efficiency . Page 39

temps), taken over all stages in a SE or IF evaluation.

The 1letters F, S, and R, are the amounts of space used
by the first, second, and result operqnds, respectively.
Outstanding temps are often linear functions of F, S and R;
such as 2F+3R. Outstanding temps can sometimes be determined
syntactically. It 1is safe to assume that singletons take up

negligible space.
IF SPACE-EFFICIENCY

IF's are free to modify their source operands since
these are passed by value in APL@CRMS. (There would be no
reason to pass these operands by value if APL@CRMS contained

instructions to index the Ith

element of any APL variable,
independent of dimensionality. If such instructions existed,
the operands could be passed by reference, instead, since they

need never be modified by IF° s. The SPACE-EFFICIENCY affect

of the proposed instructions is mentioned later.) In
practice, these modifications always yield variables of
approximately the same size as the passed operands. This 1is

because the IF’‘s ravel and reshape passed operands. Once an
operand has been ravelled or reshaped, the original operand is
discarded. The newly created variable effectively replaces
the original operand. Outstanding temps, however, will
momentarily grow by the amount of space required by the newly
created variable. We will assume for now anyway. that no

manipulation is performed in-place.

Section 11: Dyadic SE / IF Efficiency Page 40

We will find the outstanding temps for each 1IF stage,

then compute max'temps-

Step(l]: Check shapes for conformability. (Outstanding temps
= negligible). |
Step(2]: Dispatch to one of four Cases:--
Case[A] Generate "RANK ERROR"™ or "LENGTH ERROR"
traps. Exit. No result is returned.

(Outstanding temps = negligible).

Case[B] Both operands are singletons. Go to
Step(3]. (Outstanding temps = negligible).

Case[C] Both operands are identical non-
singleton arrays. Ravel the first operand into
a vector. Then ravel the second operand into a
vector. Go to Stepl(3]. (Outstanding temps =
F=S=MAX(F,S), since each original operand 1is
discarded soon after it is ravelled.)

Case[D] One operand is singleton, the other is
not. Ravel the non-singleton. Go to Stepl3].
(Outstanding temps = R).

Step(3]): Exit if empty result. 1Initialize the loop counter.
Index an element from neither, one, or both vectors
depending on whether both, one, or neither source
operands are singletons, respectively. Perform an
Element 1Iteration. Store into an element of the
result. Update then test the loop counter.

Conditionally branch back. (Outstanding temps =

negligible, since all values are scalar.)

Step(4]: Reshape the result. Exit. (Outstanding temps = R).

Section 11: Dyadic SE / IF Efficiency A Page 41

Max temps = MAX(R, MAX(F,S)) = MAX(F,S).20

But, when Case[C] or Case(D] is entered because one or
both non-singleton operand 1is a vector, a sufficiently
observant IF can reduce max temps to negligible, since nothing
must be ravelled--as in Case[C] or Case(D]--or reshaped21 -
as in Stepl(4]. 1In fact, the only time max temps has to be as
large as MAX(F,S) is when at least one non-singleton source
operand has a rank of at least two. This happens very rarely.
(Max temps would always be negligable if the proposed index

instructions existed.)
SE SPACE-EFFICIENCY

Scalar Instructions used in SE’s implicitly wuse the
microcoded dynamic storage allocator to acquire space for
their result operands. Scalar instructions also implicitly
use the dynamic storage de-allocator to free space held by

source operands, but only if they were unassigned22

2OUsually' R = MAX(F,S). The exception, R = WMIN(F,S),
will sometimes occur when one source operand is an empty
array, and the other is a singleton. The exception occurs

rarely, and when it does, the difference between F and S is
small.

21The APL@CRMS microprogram could easily be changed so
that all no-op reshapes, at least on vectors, are performed
in-place. At my urging, the microprogram was changed to ravel
a vector in-place.

22The APL@CRMS microprogram uses reference counts to keep
track how many variables are assigned to the same data.

‘Section 11: Dyadic SE / IF Efficiency Page 42

temporaries. Source operand space is freed only after the
scalar instruction’s result operand has been allocated and
completely computed. Thus, all source and result operands
must Dbe simultaneously allocated, briefiy- Consider, for

example, the real-time space requirements for this SE:

] F + S + F + F
] & ORDER OF EXECUTION: 3 2 1

] & SPACE FOR SOURCE OPERANDS: F+R S+F F+F

] & SPACE FOR RESULT OPERAND: R R F

] & OUTSTANDING TEMPS: R+R R+¥ F23

Max temps = MAX(R+F,R+R)

Parentheses imply stacking. This stacking can increase
max temps because the result of the 1last instruction is no

longer always released at the end of the next instruction.

] (F + S) + F + F
] & ORDER OF EXECUTION: 2 3 1

] & SPACE FOR SOURCE OPERANDS : F+S R+F F+F

] & SPACE FOR RESULT OPERAND: R R F

] & OUTSTANDING TEMPS: R+F R+R+F F

Max temps = R+R+F

In this example, inserting parentheses increased max temps.

23The slash-out means that the source operand’s space is
to be released at the end of the current instruction.

Section 11: Dyadic SE / IF Efficiency Page 43

Sometimes, however, inserting parentheses can decrease max

temps:
] F+F+S & max temps = R+4R
] (F+F)+S & max temps = F+R

If F were a singleton, and S were a large array., the
parenthesized expression above would have lower max temps than

the unparenthesized expression.

Definition:~--
To increase a SE’s segregation means to delay the
intermixing of a SE’s operands. As a SE becomes more
segregated, more of the intermediate results depend on

fewer and fewer source operands.

The second SE of the previous example is more segregated than
the first. The next subsection will point out other

advantages to segregating the first and second operands.

In conclusion: -~
--Max temps for SE’s, unlike IF’s, are strong functions
of syntax.
--Most SE’s, unlike most IF°s, take considerably more
than negligible space for max temps.
--IF“s, then, are generally more space-efficient than

their duals.

Section 11: Dyadic SE / IF Efficiency Page 44

TIME-EFFICIENCY

IF°s are generally less time-efficient than their duals.

This is mainly because:--

primitive

--SE’s never ravel or reshape arrays.

--Microcoded 1loops are by far faster than software

loops.

--The number of elements processed in each microcoded

loop:, unlike an IF loop:, is not necessarily as large
as the number of elements in the final result: An
SE°s intermediate results may be smaller than its
final result. This very important concept can be
exploited by segregating the operands of non-monadic
SE‘s. For example, if A or B, but not both are
singletons, and neither are empty.

J (A+AxA) + (B+BxB) & is faster than

] A+B + (AxA) + (BxB)

especially when A is singleton, and B is a monstrous

array-.

The APL@CRMS implementation of the dyadic "®" scalar

(log to a base), is a SE that uses the monadic "®&"

SE (natural log of):

]
]

& log, base X, of ¥, is implemented as

(3Y) + oX & which uses the natural logarithm,

& which is, in turn, a very large SE.

Section 11: Dyadic SE / IF Efficiency Page 45

Not one scalar instruction’s result--except for the result of
the last division--depends on both X and Y.

The conclusion that SE’s are more time-efficient than
their duals still leaves an important question unanswered: Are
SE’s more time-efficient than IF’s. The horizontal 1logic of
IF’s may contain conditional branches. Thus, it would appear
that SE‘s become less time-efficient with respect to 1IF°s as
the amount of conditional logic increases. There is a hard-
to-define crossover point, but the APL@CRMS experience has
been that only one scalar function contains enough conditional
logic to justify being simulated horizontally ag an IF (for
solely time-efficiency reasons)-. That function is the

extremely complex Circular Function.

Section 12 Page 46

Conclusion

The vertical implementation has been covered much more
extensively than the horizontal implementation in this paper.
The horizontal implementation, however, is already well-
understood and heavily used,' whereas the vertical
implementation is not. Vertical programming today is rare,
except perhaps on array processors and non-backup pipelined
processorse. ‘Yet, it has been our experience that vertical
expreséions are both faster and clearer than functionally
equivalent horizontal loops-.

This paper has been a qualitative study of various
aspects of the vertical and horizontal implementations of
scalar functions. As such, no single, unifying conclusion has
been reached. The various, somewhat-related conclusions which
were reached, however, can be relevant to a wide assortment of
professions.

Programmers, for example, should try to look upon the
vertical, array processing, programming style as a clear and
concise representation.

Arithmetic-Unit developers may now be able to justify
special case logic to handle frequent multiplications by =zero
or one.

APL implementers may attach new importance to agreeing
to a standard evaluation of pornographic expressions, since

multiple assignments can significantly reduce a vertical

.Section 12: Conclusion Page 47

program’s complexity. Perhaps the APL@CRMS evaluation should
be the standard.

Array processor designers, who want to simplify vertical
programming, should design a "base set" of scalar instructions
which is as complete as possible, yet with a minimal number of
hard-to-anticipate properties.

Array processing compiler writers may see the need for
an optimizer which maximizes object code segregation by

rearranging scalar functions in expressions.

There are many unanswered gquestions related to this
study. A few of these questions which merit further research

are:

--How useful are scalar functions with three or more
operands? Are monadic and dyadic scalar functions

sufficient?

--When should a scalar function be implemented as a
blend of the horizontal and vertical 'methods? The

Circular Function is implemented this way-.

--Why isn‘t it obvious when a set of scalar functions
is incomplete? Why was it so hard to predict the

effect of the new, mixed array. data type?

	Table of Contents
	1. Introduction
	2. Definitions and Formalizations
	3. APL @CRMS Standards
	4. The APL@CRMS Scalar Instruction Set
	5. Some Nitty-Gritty Vertical Examples
	6. Two Advantages of Programming Vertically
	7. Two Useful Vertical Programming Tools
	8. The APL@CRMS SE Implementation
	9. Reducing the Scalar Instruction Set
	10. Three Scalar Expression Limitations
	11. Dyadic SE / IF Efficiency
	12. Conclusion

