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Plus, Minus, Modulo, Maximum and Nor are examples of 

scalar functions. If one or more operand is an array, a 

scalar function performs an identical computation for each 

element in the result, which is also an array. 

Array processors typically support a set of instructions 

that act like scalar functions. These instructions can be 

combined to simulate more complex scalar functions, without 

looping. Alternatively, scalar functions can be simulated as 

a program which loops once for each element of the array 

result- These two simulation methods are named the vertical 

and horizontal simulation methods, respectively. 

Both methods have been used on an array processing APL 

machine designed by the Center for Research in Management 

Science, where the vertical simulation was found to be much 

clearer to read and faster, but bulkier, than the horizontal 

simulation, for most--but not all--scalar functions. 

This discovery is one of many conclusions that may apply 

to similar dynamically allocating array processors, including 

the next generation of APL emulators. 
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Section 1 

Introduction 

Many useful array manipulations--such as multiplying a 

vector by a scalar to obtain a vector, and adding together two 

matrices of the same shape to obtain a third--are called 

scalar primitives. The APL computer language provides a large 

collection of built-in scalar primitives. All scalar 
1 

primitives have one result, and at least one source operand. 

The 1 th element of the result is computed using an element 

from each source operand- If a source operand contains 

exactly one element, then that element is used. Otherwise, 

the 1th element is used. Comprehensive definitions will be 

presented when more key terms have been described. 

The APL@CRMS 1 host machine 2 executes a set of 

instructions, including Times and Plus, that act like scalar 

primitives. These instructions are known as scalar 

instructions ■ Other instructions, such as branch and index, 

do not act like scalar primitives. The Scalar Instruction Set 

contains all scalar primitives that correspond to exactly one 

machine instruction ■ The remaining scalar primitives are 

lp. McJones, c. Grant & w. Greiner, CRMS APL Processor 
Manual, Center for Research in Management Science, University 
of California, Berkeley (Revised May 30, 1974). 

2The APL@CRMS host machine is microprogrammed to emulate 
a subset of the APL language. For more information about this 
machine, consult the Digital Scientific Corporation META 4 
Computer System Microprogramming Reference Manual, publication 
number 7043MO (March 1972). 
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bootstrapped from more than one instruction. This paper 

examines the two bootstrap methods used on the APL@CRMS 

system: th~ horizontal and the vertical methods- The 

horizontal method computes each element of the final result 

(from start to finish) before beginning to compute the next 

element of the final result- A program that adds a vector to 

a scalar then multiplies the sum by another scalar, by looping 

once for each element in the vector, is an instance of the 

horizontal method- The vertical method performs a single­

instruction operation on all intermediate results before 

executing the next single-instruction 

vector to a scalar then multiplying 

operation. Adding a 

this sum by another 

scalar, using the Plus and Times scalar instructions, is an 

instance of the vertical method. Here, the intermediate 

result--a vector of sums--has a shape equal to the shape of 

the final result- In general though, intermediate results may 

have more, or less, elements than the final result. 

One or more scalar instructions occur in each APL@CRMS 

vertical implementation. These implementations take advantage 

of the array processing features of scalar instructions. 

Unfortunately, the existing vertical implementations are not 

yet understood well enough to be systematically adapted for 

any arbitrary scalar primitive- Or, more to the point, 

discovering a vertical implementation i~ a heuristic problem. 

Yet many aspects of the vertical, array processing method are 

beginning to be understood. The vertical method, because it 
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lacks conditional branching, should be of particular interest 

to users of parallel and non-backup pipelined machines. This 

paper compares interesting aspects of the vertical method to 

similar 

horizontal 

aspects of a universally-adaptable, looping, 

method. Dynamic storage allocation and 

deallocation demands, relative execution speeds, program style 

and clarity, user error detection, time- and space-efficiency, 

and both theoretical and practical limitations are among the 

aspects compared. 

The APL community has long been aware of the array 

processing features of one-line programs that use scalar 

primitives. A 1971 APL reference manual, 3 for example, spoke 

of "programs that were originally expected to work on single 

numbers, but which turn out to work just as well on vectors of 

numbers- •• rt isn't clear how this can be done." Although 

many APL references notice these powerful one-line programs, 

few attempt to analyze the tradeoffs between non-looping 

programs and looping programs that do the same thing. 

paper attempts one such analysis-

This 

3APL/360 Primer, IBM number GH20-0689-2, P• 110 (1971) ■ 
This primer is a second revision- Interestingly enough, 
neither the original nor the first revision contain a similar 
quotation-
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Definitions and Formalizations 

SCALAR FUNCTIONS 

Scalar functions have one, two or more source operands, 

and return exactly one result. This result is scalar only if 

all source operands are scalars. The result is an array if 

any source operand is an array. The shape 4 of the result of 

a monadic 5 scalar function is the same as the shape of the 

lone source operand. R, the shape of the result of a non-

monadic scalar function, depends on {Si: l~i~N}, the shapes of 

the N source operands. The four possibilities are: 

u) If the set S'={Si: 
one or more shape, 
is the same as 
singleton-shapes. 

s 1. ~ singleton-shape}, 6 contains 
a 1 of which are identical, then R 
the shapes in {Si} that are not 

b) Otherwise, ifs• is the empty set, then R is the same 
as the longest of the Si vectors. 

c) Otherwise, if the lengths of any two vector members 

4The shape of an APL variable is a vector of dimensions. 
The shape of a 2 by 3 by 4 array, for example, is 2 3 4. The 
shape of a scalar is the empty vector. 

5Monadic means 
source operands. 

one source operand. Dyadic means two 

6sinqleton-shapes are vectors that contain only 
ones- Singletons are single element variables, 
scalars, single element vectors, and 1 by 1 matrices. 

numeric 
such as 
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of s' are unequal, then generate the "RANK ERROR" 7 
trap. No result is returned. 

d) Otherwise, some elements in some vector members of s' 
are unequal ■ Generate the "LENGTH ERROR" trap. No 
result is returned. 

In summary: 

R, the shape of the result:--

--depends on the shapes in {Si}' and not on the values 
of the elements in the source operands ■ 

--is the same as one or more shapes in {Si}. 
~ 

--would be unchanged if the ordering of the operands 
were rearranged. 

Scalar functions:--

--are never functions of less than one variable ■ 

--give the illusion that identical logic is re-executed 
once for each element of the result. (The actual 
implementation is not required to follow the 
illusion.) 

Here is the Fundamental Criterion of Scalar Functions:--

--The result of a scalar function never depends on the 
order in which the elements of the result are 
computed. 

In fact, the elements might as well be computed in parallel ■ 

The Criterion will be invoked later to distinguish scalar 

functions from the similar monadic"?" function (Roll) ■ The 

Roll function generates pseudo-random positive integers, 

7The rank of an APL variable is the number of dimensions 
it has ■ Or, more precisely, an APL variable's rank is the 
shape of its shape. The ranks of a scalar, vector, matrix, 
and N-dimensional array are 0, 1, 2, and N, respectively. 
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analogous to the "roll of the dice." 

Scalar primitives are defined as scalar functions that 

happen to be APL language primitives. All scalar primitives 

are either monadic or dyadic scalar functions. A Non­

Instruction Scalar Primitive is any scalar primitive which is 

not functionally equivalent to one APL@CRMS instruction ■ Non­

Instruction Scalar Primitives are simulated with more than one 

APL@CRMS instruction ■ These simulations must be careful to 

generate the correct error trap whenever operands are outside 

their domains. Currently, two types of scalar function 

simulations have been implemented on the APL@CRMS system: the 

horizontal Iterating Function and the vertical Scalar 

Expression simulations ■ They are described below. 

ITERATING FUNCTIONS: THE HORIZONTAL IMPLEMENTATION 

The looping Iterating Function (IF) method re-executes 

some logic once for each element of the result ■ 

Definition:--

--An Element Iteration is the horizontal logic which is 

computed once for each element of the result by an 

Iterating Function ■ The result must be independent 

of the order of iteration ■ This latter requirement 

stems from the previously defined Fundamental 

Criterion of Scalar Functions. 
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The typical IF contains three parts: the front-end part, the 

re-executing Element Iteration part, and the back-end part. A 

front-end part for a monadic scalar function might look like: 8 

] S:=.SHAPE.X 
] X:=.RAVEL.X 
] I:=.SHAPE.X 
] R:=X 

& Sis the shape of the operand, x. 
& Ravel X into a vector. 
& I is the length of this vector. 
& Initialize the result, R. 

The re-executing Element Iteration part of the Signum--or 

"sign of" function--might look like: 

] START: GOTO END IF I=0 
1 R[I]:=1 & Assume positive. 
] GOTO DONE IF X[I]>0 
] R [I] : =0 & Assume zero. 
] GOTO DONE IF X[I]=0 
] R [I] : =-1 & Necessarily negative. 
1 DONE: J;:=I-1 
] GOTO START 
) END: 

And the back-end part might look like: 

R:=S.RESHAPE.R 

Notice how the above IF performs a special test designed to 

determine whether the source operand is an empty 9 array. 

Also notice that the re-executing Element Iteration part 

8Raw APL lines are denoted by a right bracket, ")", on 
the left margin. If an APL line contains an"&", then 
everything to the right of the leftmost"&" is comment. 

9An array is empty if it contains no elements- Length 
zero vectors and 2 by 0 matrices are examples of empty vectors 
and matrices, respectively. 
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indexes into a ravelled10 version of the operand. The 

operand had to be ravelled into a vector so that each element 

could later be indexed, one at a time. The expense of front­

end ravelling and back-end reshaping could have been avoided 

if APL@CRMS contained an instruction that indexed the r th 

element of any APL variable, independent of its 

dimensionality. Adding such an instruction to. the APL@CRMS 

non-scalar instruction set could improve IF time and space 

efficiencies. 

SCALAR EXPRESSIONS: THE VERTICAL IMPLEMENTATION 

A Scalar Expression, unlike an Iterating Function, does 

not loop. In other words, a Scalar Expression is executed 

once for each result, rather than once for each element of the 

result• Scalar Expressions compute multiple element results 

in just one pass due to the array processing nature of each 

scalar instruction. Scalar instructions may internally11 

invoke logic that is sequential, parallel, pipelined, or even 

magical in nature. The internal logic is transparent to the 

software programmer. Certain hardware designs may run faster 

lOThe ravel of any N element APL variable returns an N 
element APL vector ■ The N elements are stored in row-major 
order (like PL/I, and unlike FORTRAN). Ravelling a scalar, a 
2 by 3 matrix, and a vector returns a single element vector, a 
six element vector, and an unchanged vector, respectively. 

11APL@CRMS scalar instructions invoke very fast microcoded 
loops. 
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than others, but for our purposes, it does not matter that, 

say, a particular sequential machine runs faster or slower 

than another parallel machine. 

Definitions:--

--A 2 Scalar Expression, where 2 is a 
functions, is an APL expression 
following svntactic qualifications: 

set 
that 

of scalar 
meets the 

1. All of its function calls are to functions 
in the set 2, and 

2. All of its constants are scalars. 

--A scalar-bound variable is any variable that is known 
to be a scalar: its rank is zero-

--A Monadic(Dyadic) § Scalar Expression is a 2 Scalar 
Expression that contains exactly one(two) variable(s) 
that is(are) not scalar-bound. 

If one understands the above definitions, the following 

unproved assertions should be plausible:--

--A Monadic 2 Scalar 
scalar function of its 
scalar-bound. 

Expression returns a monadic 
only variable that is not 

--A Dyadic 2 Scalar Expression returns a dyadic scalar 
function of its two variables that are not scalar­
bound. 

We will frequently refer to an APL@CRMS Scalar Instruction Set 

Scalar Expression. These seven words will be abbreviated as 

SE. 
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DUALITY AND FUNCTIONAL EQUIVALENCE 

Many languages besides APL support scalar functions. 

APL, however, is one of the few languages that would evaluate 

an expression like 

A:=(B+C)xD 

vertically. If B, C and Dare equally shaped arrays, then APL 

must allocate storage for the intermediate result array, B+C. 

Most other languages that support scalar functions, such as 

ALGOL, PL/I, and some BASICs would evaluate the above 

expression horizontally, as one implicit do-loop. In other 

words, each element A[i] of the final result is computed, from 

start to finish, before beginning to compute the next element. 

Definitions:--

--The dual of a SE is an IF that executes the SE 

horizontally as an Element Iteration: The SE is 

evaluated, with scalar arguments, once for each 

element of the result-

--The dual of the dual of a SE, is the SE itself. 

Every SE has a dual- But not every IF has a dual, because an 

!F's Element Iteration need not conform to the constraints12 

12Refer back to the definition of an~ Scalar Expression, 
given earlier in this section-
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that Scalar Expressions must c9nform to. If an Element 

Iteration contains any conditional branching, then the Element 

Iteration's IF has no dual. 

A SE and its dual are functionally equivalent. Two 

algorithms are said to be functionally equivalent if, whenever 

they both compute results, the two results are equivalent. 

However, when both generate errors in lieu of results, these 

errors need not be equivalent. This is because multiple user 

errors may be detected in a different order, by the two 

algorithms. Assume, for example, the existance of two 

functionally equivalent simulations of the Divide scalar 

primitive. The two might generate different errors for the 

expression 

(lE-30 6 9) + (1E34 2 0) & which performs a scalar 

division between two three-element vectors. Here, three 

divisions must be computed, two of which contain user errors. 

One simulation might try to compute lE-30 • 1E34, and detect 

an underflow error. A functionally equivalent simulation 

might try to compute 9 + 0 first, instead, and detect a divide 

by zero error. 

Also, if an algorithm successfully computes a result, .a 

functionally equivalent algorithm might generate an error. A 

SE may successfully compute a result, for example, while its 

fun~tionally equivalent dual generates the "NO MORE SPACE 

LEFT" trap. 
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APL@CRMS Standards 

APL@CRMS supports the following scalar primitives, some of 

which are Non-Instruction Scalar Primitives. 

Monadic:-­

No_Change 
Change_Sign 
Signum 
Reciprocal 
Exponential 
.Logarithm 

. Ceiling 
Floor 
Magnitude 
Factorial 
Pi_Times 
Not 
ID 
Translate 

Dyadic:--

Plus 
Minus 
Times 
Divide 
Power 
Logarithm 
Maximum 
Minimum 
Residue 
Combinations 
Circle 
( 
( 
( 
And 
Or 
Nand 
Nor 
Less_Than 
Not_Greater 
Equal 
Not_Less 
Greater 
Not_Equal 

( sign of) 
(1 divided by) 
(e raised to) 
(natural log of) 
(least int not<) 
(greatest int not> 
(absolute value of) 
(gamma function of) 

(internal type of) 
(convert between types) 

(raise to a power) 
(log to a base) 

(similar to remainder) 
(complete beta function) 
(sin, cos, tan, 
arcsin, arccos, arctan, 
sinh, cosh, tanh, 
arcsinh, arccosh ••• ) 
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An early design goal of APL@CRMS was to be similar to 

APL\360. APL\360 at the time was the dominant APL 

implementation• So, it was felt APL@CRMS programmers would 

probably have had prior APL\360 experience. 

There are many differences13 between the APL\360 and 

the APL@CRMS implementations, however. The two were designed 

for different purposes: APL@CRMS was designed primarily· to 

run extremely interactive management science experiments: 

APL\360 wasn't. APL@CRMS is almost a decade newer. It 

incorporates newer hardware technologies and software 

strategies. Yet, most of the differences appear so well 

thought out that studies, such as this, performed on APL@CRMS 

should apply to existing APL implementations, as well as 

future implementations now on the drawing board. 

A few of the differences affect scalar functions, 

indirectly. One such difference is a new data-type. Mixed 

arrays, which existed in the earliest description of APL, 14 

are arrays that contain both numbers and characters. APL\360 

does not support mixed arrays, whereas APL@CRMS does. Special 

scalar primitives exist in APL@CRMS for manipulating mixed 

arrays. These primitives comprise the set of mixed scalar 

primitives. This set never existed on APL\360. APL@CRMS was 

13w. Greiner, APL@CRMS Users Guide, Center for Research in 
Management Science, University of California, Berkeley (To Be 
Published). 

14 K. E. Iverson, A Programming Language (1962). 
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required to establish standards for the handling of mixed 

arrays, through trial and error. It now appears that the set 

of mixed scalar primitives, as currently implemented is 

incomplete. The issue of completeness will be discussed 

further in the subsection, "A SCALAR INSTRUCTION SET THAT IS 

NOT COMPLETE." 

Expressions which contain more than one assignment 

symbol (":=") are called 

implementations evaluate some 

Pornographic. Some APL 

pornographic expressions in a 

hard-to-anticipate 

evaluates these 

predictable rule: 

manner- APL@CRMS, however, always 

expressions according to a straightforward, 

all multiple assignments are evaluated in 

strict, right-to-left, order. Thus, the expression 

( (A: =2) +A) +A: =l & for example, 

returns 4, in APL@CRMS. The same expression might return 5 or 

6 on some IBM-based APL implementations, such as .APL.sv~, 

APL*PLUS, and PCS\APL. The subsection, "MULTIPLE 

ASSIGNMENTS," discusses some reasons for using expressions 

that contain more than one assignment symbol-
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The APL@CRMS Scalar Instruction Set: 

& (ID) Returns 1 if Y is numeric, O if character­

& (Translate) Converts from character to integer, 
& and integer to character. The "DOMAIN ERROR" 
& is generated if Y is numeric, but not an 
& integer between 0 and 255. 

& (Equals) Returns l(true) or 0(false). See below 
& for traps that may occur when X and Y are numeric-

1 & All following instructions will generate the "TYPE ERROR" 
1 & if any element of their operand(s) is non-numeric-

) +Y & Returns y. 

-Y & (Change_Sign) Returns Y subtracted from o. 

-FLOOR.Y & Returns the greatest integer not greater than y. 

-CEILING-Y & Returns the least integer not less than Y. 

IY & (Magnitude) Returns the greater of Y and -Y. 

X+Y & (Plus) Dyadic+ - x +<and= may generate the 

X-Y & (Minus) "FLOATING POINT OVERFLOW ERROR," or the 

XxY & (Times) "FLOATING POINT UNDERFLOW ERROR" traps. 

X+Y & (Divide) May generate the "DIVIDE BY ZERO ERROR." 

X<Y & (Less_Than) 

& All following instructions will generate the "DOMAIN ERROR" 
& if any element of any operand is non-binary. 

-Y 

x.oa.y 

& (Not) 

& (And) 

& (Or) 

A goal of the APL@CRMS Scalar Instruction Set is to 

detect user errors very. soon after they occur, so as to 

minimize error propagation. 
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Some Nitty-Grittv Vertical Examples 

EXAMPLES OF THE VERTICAL STYLE 

Vertical programs do not look like horizontal programs. 

Their styles are different. Good vertical programs often seem 

hideously inefficient and sloppy to someone with only 

horizontal experience. Since vertical programs are not yet 

commonplace, this section will go over a few SE examples. 

These examples will be drawn from scalar primitives, whenever 

possible-

A few Non-Instruction Scalar Primitives have very 

obvious SE's: 

•Y & (Reciprocal) is the 1-0•Y SE. 

X-:IY & (Not_Equal) is the -X=Y SE. 15 

X>Y & (Greater) is the Y<X SE. 

X_5Y & (Not_Greater) is the ( X <Y) .. OR. X=Y SE. 

oY & (Pi_Times) is the 3-14159265xY SE. 

Most Non-Instruction Scalar Primitives, however, have 

somewhat less obvious SE's. The dyadic "I" scalar primitive 

(Residue), for instance, is defined as follows: 16 

15 APL expressions are always evaluated right-to-left, 
except that parentheses behave in the usual way. Aside from 
this rule, there are no operator precedence rules, whatsoever. 

16AIB in APL is similar to B modulo A, the remainder of B 
divided by A. 
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AIB & for A~0, 

& for A=0 and B~0, is B 

& for A=0 and B<0, generates the "DIVIDE BY 
& ZERO ERROR" trap. 

In APL@CRMS, Residue is implemented as one SE which covers all 

three cases: 

XIY & is the Y-( IX)x°FLOOR ■ Y•IX+(Y<0)<X=0 SE ■ 

This tricky code is necessary because vertical programs may 

not contain conditional branches ■ 

EXAMPLES OF INSTRUCTION IDIOSYNCRACIES 

The monadic "x" scalar primitive (Signum) also has three 

cases. If the source operand is positive, negative, or zero, 

monadic "x" returns 1, -1, or 0, respectively. 

xY & (Signum) is the (0<Y)-Y<0 SE ■ 

The Signum SE is well-defined for all values of Y largely 

because of this very important characteristic of the+ - x • < 

and= scalar instructions: None will give inaccurate results, 

or generate the unexpected "FLOATING POINT OVERFLOW ERROR" or 

"FLOATING POINT UNDERFLOW ERROR" traps if either source 

operand is zero. Unfortunately, there can be messy roundoff 

and other problems if both operands are nonzero: 

& (Maximum) is the X+(Y-X)xX<Y SE, or is it?? 
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The answer is "no," since:--

--for a very negative X and a small Y, say X=-1E30 and 

Y=2, the subexpression (Y-X) returns -x, due to a 

common roundoff idiosyncracy. And, at best, zero is 

only "close to" (-lEJ0).MAx.2. 

--for a very negative X and a very positive Y, and 

vice-versa, the subexpression (Y-X) generates the 

"FLOATING POINT OVERFLOW ERROR" trap, which is never 

an appropriate trap for X-MAx.y. 

A better simulation of 

] X.MAX-Y & is the (YxX<Y)+Xx-X<Y SE. 

Sometimes even this SE generates an unexpected error. When X 

and Y are sufficiently close together, but not equal, X<Y 

generates the "FLOATING POINT UNDERFLOW ERROR" trap. X<Y in 

microcode computes X-Y, which can cause underflow problems 

because APL@CRMS does not support unnormalized floating point 

numbers. The problem, as numerical analysts know, lies with 

the"<" scalar instruction. However, any microprogram patch 

that corrects the "<" problem implicitly fixes the ".MAX 0" 

problem, _too. This example suggests a prudent precaution: 

Since the characteristics of one scalar instruction may have a 

strong influence upon the characteristics of many SE's, all 

hard-to-anticipate idiosyncracies should be removed from 
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scalar instructions. (Many hard-to-anticipate arithmetic 

idiosyncracies in APL@CRMS could easily have been eliminated 

early in the design by heeding the advice of a competent 

numerical analyst.) 

These idiosyncracies tend to affect vertical programs 

more than horizontal programs. This is because the latter may 

conditionally branch around special case code whenever an 

operand is out of bounds. 

need only test his code 

Thus, in the latter, the programmer 

between narrow programmer-defined 

bounds ■ Special case vertical code, on the other hand, could 

conceivably be required to process any operand value, 

whatsoever. 

EXAMPLES OF LOCALIZATION 

If both X and Y were singletons, the double evaluation 

of· X<Y by the above Maximum SE would be trivial. But, since X 

or Y may be monstrous arrays, a viable alternative for 

x.MAX-Y & is the (YxTEMP)+Xx-TEMP:=X<Y SE, 

& followed by FREE(TEMP). 

SE's defined from now on may contain the Maximum 

primitive even though Maximum does not belong to the APL@CRMS 

Scalar Instruction Set. This is because the notation, 

"■ MAX.", may be considered an abbreviation of the Maximum SE. 

The abbreviation principle applies to all SE simulations, and 

not just the Maximum SE. 
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EXAMPLES OF NON-DISTRIBUTION· 

Many mathematical Non-Instruction Scalar Primitives 

eva1u·ate a fixed number of terms in one of many selectable 

series. The series selected depends on the source operand, x. 
Series 1, for example, would be used if 0<X<l: while series 2 

would be used if l~X<J.14159: and so-on. This logic could be 

implemented as the SE: 

{SERlx{O<X).AND.X<l) + {SER2x{l~X).AND.X<3.14159) + ••• 

Most of the time, the first few operations of SER!, SER2 , 

etc., are identical. Then, tOOi a few series may shaie 

operations that are not shared by all the series. The better-

written mathematical SE's tend not to distribute_ 

multiplication over addition. A non-distributive SE might 

look like: 

SER_START + {SER_MIDl+{SER_ENDllx ••• ) + SER_END12X•••) 

+ {SER_MID2+{SER_END2lx ... ) + SER_END22x ... ) 

+ •.. 

Not distributing multiplication over addition increases SE 

time-efficiency by reducing the number of scalar instructions 

executed. More will be said about the strong relationship 

between SE syntax and SE efficiency in the "SE SPACE­

EFFICIENCY" and the "TIME-EFFICIENCY" subsections. 
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EXAMPLES OF NON-SIMULATION APPLICATIONS 

SE's have many applications in additon to simulating 

Non-Instruction Scalar Primitives. 

return scalar functions. 

Recall that all SE's 

The "convert small letter into capital letter" monadic 

scalar function could be simulated as the following SE: 

1 & Pis the operand of the "convert small letter 
1 & into capitol letter" scalar function. 
J & Integer SMALL is the scalar constant .TRANS ■ 'a' • 
) & Integer DIFF is the constant (.TRANS.'A')-.TRANS.'a' ■ 
] ■ TRANS ■ CP + DIFFx(SMALL.S,CP) ■ AND.(CP:=.TRANS ■ P)<26+SMALL 

This SE assumes that the character codes for small 'a' through 

small 'z' are contiguous, as are the codes for capital 'A' 

through capital 'z'. The next "convert small letter into 

capital letter" SE makes no such continuity assumptions: 

-TRANS ■ CP + (((.TRANS.'A')- ■ TRANS.'a') X CP= ■ TRANS.'a') 

+ (((.TRANS.'B')-.TRANS.'b') x CP= ■ TRANS.'b') 

+ (((.TRANS.'C')-~TRANS ■ 'c') X CP=.TRANS.'c') ••• 

+((.TRANS.'Z')-.TRANS ■ 'z')x(CP:=.TRANS.P)=.TRANS.'z' 

SE's that contain a large amount of conditional logic tend to 

be long. But fortunately these SE's can be very easy to 

program, as the next sections will show. 

-- -------·------- --- ----
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Two Advantages of Programming Vertically 

CLARITY 

Most people prefer to program horizontally. Perhaps 

vertical programs seem too complicated, since vertical 

instructions sometimes process large arrays, whereas 

horizontal instructions work with simple scalars, only. And, 

many people believe that array programming is less natural for 

human beings than sequential programming. This belief cannot 

always withstand scrutiny. Let's look at the problem of 

adding two equally shaped vectors, X and Y, ~lacing the vector 

of sums in z. Here is one horizontal approach, using FORTRAN: 

9 DO 10 I=l,N 
10 Z(I)=X(I)+Y(I) 

I doubt whether DO-LOOP syntax looks natural to the novice. 

Furthermore, the above DO-LOOP solves only part of the 

problem ■ N, the length of X, is not given. Z must be 

statically dimensioned for the worst case, since FORTRAN does 

not support a dynamic storage allocator ■ A better example of 

the horizontal approach is the following APL program, which 

implicitly uses APL's dynamic storage allocator: 

1 
1 
) 
) 

1 
1 

LOOP: 

Z: =X 
I:=.SHAPE ■ X 

EXIT IF I=0 
Z [ I J : =X [ I J + Y [ I ) 
I: =I-1 
GOTO LOOP 

& Zand X have the same shape. 
& I becomes the shape of x. 
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Now, contrast the naturalness of the above example with that 

of the vertical approach using APL: 

Z: =X+Y 

The addition of vectors problem 

functions that can be stated more 

horizontally. Horizontal programs, 

is one of many scalar 

clearly vertically than 

at least in APL, are 

notoriously unreadable; whereas vertical programs can be 

extremely clear and concise. 

GENERALITY 

Scalar Expressions offer many programming conveniences 

not found in conventional, horizontal programs. Since Scalar 

Expressions are unaware of the shapes of their operands, the 

Scalar Expression programmer is not responsible for ravelling 

or reshaping arrays, or looping, or incrementing and testing 

nested counters. Scalar Expressions are never written to work 

on an operand with a specific shape: instead, they are always 

written to handle the more general case of any operand shape, 

whatsoever. And, Scalar Expressions have a surprisingly wide 

range of applications. In fact, virtually all the APL@CRMS 

scalar primitives have already been implemented as SE's. 

-- ~- -- -------
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Two Useful Vertical Programming Tools 

Unfortunately, SE programming usually takes considerable 

thought. I hope that Scalar Expression programming eventually 

will become more standard, and less of an art. With this goal 

in mind, let me list two Scalar Expression programming 

techniques. 

MULTIPLYING BY A BINARY VALUE 

Conditional branching can be approximated by summing up 

a series of products, each consisting of a term multiplied by 

the binary (1 or 0) result of a relational subexpression. 

Multiplying a term by a binary value yields either the term 

itself or zero- This technique makes the monadic "x" SE very 

trivial to derive. 

] xY 
] 

& is (lx0<Y) + (-lxY<0) + 0xY=0 
& which can be simplified into (0<Y)-Y<0 

It is easy to conditionally induce errors, as in 

EXPR + (-l+B<0) + -1+3.1415926<B 

which generates the "DOMAIN ERROR" trap unles~ every element 

in Bis between zero and Pi. (The domain of the"-" primitive 

is the set {0,1}). 

The disadvantages of this technique stem from the fact 

that certain intermediate rosults--those with no bearing on 

the final result--are computed first, then multiplied by zero. 

Two of the disadvantages are (1) inefficiency caused by 

performing needless computation, and (2) 'hard-to-anticipate 
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errors which occur because no portion of a SE may be 

conditionally bypassed when operands are out of bounds. 

MULTIPLE ASSIGNMENTS 

Multiple statements can be approximated with multiple 

assignments. Although multiple assignments are never 

necessary, they can significantly reduce SE complexity. Take, 

for example, the problem of raising X to the non-negative 

integral power P, by performing up to Pmax successive 

Normally, the SE complexity grows by multiplications. 

Order(Pmax). But, through multiple assignments, the SE 

complexity grows by only Order(log Pmax). (For clarity, the 

multiple assignment SE is represented as a sequence of smaller 

SE's, one per line): 

] L!={LxY:=X) + -L:=(I+I:=.FLOOR-P•2)<P 
J & previous line handles Pmax=2-1=1 
] 
1 L!=((LxY:=YxY) + -L!={I+I:=.FLOOR.I•2)<I))xL 
] & previous line handles Pmax=4-1=3 
] 
] & next line handles Pmax=8-1=7 
] L:=((LxY:=YxY) + -L!=(I+I:=.FLOOR.I•2)<I))xL 

Adding on N more lines exactly like the last pushes Pmax to 

2N+3_1. 

Unfortunately, all multiple assignment SE's are 

pornographic, and so may evaluate unpredictably on certain 

IBM-based APL implementations. 
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The APL@CRMS SE Implementation 

Almost all Non-Instruction Scalar Primitives have been 

implemented, in APL@CRMS, as SE's. The smaller SE primitives 

are installed as in-line macros, which are "called" 

immediately after their operands are pushed onto the stack. 

There are three temporary variables, which are global and are 

provided for the exclusive use of in-line macros. These 

variables are not accessable to the problem program. They 

are, however, available to the debugging programmer. In-line 

macros which assign values to temporary variables must 

explicitly FREE these variables, before "returning." This 

makes temporary variables appear to be local. In practice, 

temporary variables are used to memorize operands before they 

have been popped from the stack. The monadic "x" macro 

(Signum or (O<Y)-Y<O ), for example, is: 

(a) 

( b) 

(c) 

< d > 

( e) 

( f) 

( g) 

( h) 

( i) 

ASSIGN TEMPl 

PUSH numeric 

INTERCHANGE 

LESS_THAN 

PUSH TEMPl 

PUSH numeric 

LESS_THAN 

SUBTRACT 

FREE TEM.Pl 

0 

0 

(copy top of stack to TEMPl) 

(onto top of stack) 

(top 2 slots on stack) 

(replace top 2 slots with<) 

(onto top of stack) 

(result is now on top of stack) 

(localize TEMPl) 
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The larger SE primitives are installed as calls to APL@CRMS 

RUNTIME functions. The Call non-scalar instruction instructs 

the microprogram to add a new frame on the stack, update a few 

state words, and initialize any local variables ■ The Return 

instruction reverses the process, and implicitly de-allocates 

all local variables. 

Compared with the RUNTIME installation of SE primitives, 

the macro installation is 

--faster because there are no Call or Return 

instructions executed ■ 

--bulkier because the macros usually expand into more 

code than that of a single Call instruction ■ 
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Reducing the Scalar Instruction Set 

The APL@CRMS Scalar Instruction Set can be reduced from 

what is currently supported without losing any functional 

properties. 

Definition:--

--A set SS of scalar functions is a Reduced Set if all 

functions in the APL@CRMS Scalar Instruction Set can 

be simulated by SS Scalar Expressions. 

The APL@CRMS Scalar Instruction Set is a Reduced Set, by 

definition. A more interesting Reduced Set, SS, is 

SS = {.TRANS., =, .CEILING., dyadic-, x, +, <, -} 

Notice that every function in SS also appears in the APL@CRMS 

Scalar Instruction Set, although this is not a prerequisite 

for ss to be a Reduced Set. We must show that all functions 

in the APL CRMS Instruction Set, but not in SS, can be 

simulated by SS Scalar Expressions. 

.Io.y & is the 1-(Y='a' )-0-(Y='b') ..• -(Y='Z') SE. 17 

& (There are 256 APL@CRMS character codes.) 

+Y & is the 0-0-Y SE. 

l -Y & is the 0-Y SE. 

-FLOOR.Y & is the 0-.CEILING.0-Y SE. 

1 7All ss Scalar Expressions are also SE's, since ss is a 
subset of the APL@CRMS Scalar Instruction Set. 
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IY 

X+Y 

& (Magnitude) is the Yxl-2xY<0 SE. 

& is the X-0-Y SE. 

Page 29 

is the -(--X)<-Y SE. The double negation 
& generates "DOMAIN ERROR," when appropriate ■ 

X-AND-Y & is the (-X)<--Y SE ■ 

If APL@CRMS numbers were represented in two's complement 

form, 18 then the 0-0-Y SE would not correctly simulate 

monadic "+" for all values of Y ■ 

There may be SE's which simulate Times, without using 

the "x" scalar instruction ■ Due to the finite precision of 

"x" and "•", the X+l+Y SE does not correctly simulate "x" for 

all values of X and y. One case in point is Y=0. 

The"+" primitive cannot be simulated by SS-{"+"} Scalar 

Expressions because"•" is the only function in ss capable of 

generating the "DIVIDE BY ZERO ERROR" trap. But, the "-" 

primitive can easily be simulated by a SS-{"-"} Scalar 

Expression ■ Translate can generate the "DOMAIN ERROR" trap, 

which is a necessary part of the Not simulation. 

SS would still be a Reduced Set if certain pairs of 

functions were replaced by single, new functions. But the 

above examples should serve to caution Scalar Expression 

programmers to pay very careful attention to the 

18The set of two's complement numbers is not closed under 
the Change_Sign function- This is because a two's complement 
number, N, is equal to l+BITWISE_COMPLEMENT_OF(-N). 
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idiosyncracies of both the simulated and the simulating 

functions-

X=Y 

X<Y 

& Replace= and< with S· Now, define 

& as the (XSY)xYSX SS Scalar Expression, and 

& as the (XSY)x-YsX ss Scalar Expression. 

Unfortunately both definitions are incorrect when X and/or Y 

contain characters. To be more precise, the"=" and"<" ss 

Scalar Expressions violate two rules:--

--that X=Y must return O when X or Y, but not both, is 

character, and 

--that X<Y must generate the "TYPE ERROR" trap when X 

and/or Y is character. 

A more suitable building block than"<" is"<", where 

1 X=<Y & returns 1 if X=Y. Otherwise, it 
l & returns 0 if X and/or y is character and X "IY • 
l & If neither applies, X<Y is returned. Now, 

X=Y & becomes the (X=<Y)xY=<X SS Scalar Expression. 

X<Y & becomes (X=<Y )x-Y=<X-Y-Y ss Scalar Expression. 

The extra subtractions generate the necessary "TYPE ERROR" 

when one or both operands of"<" is character. 

The following transformation of a Reduced Set yields 

another Reduced Set: Replace all monadic functions with one 

dyadic function that dispatches on its left operand. 
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Three Scalar Expression Limitations 

A SCALAR INSTRUCTION SET THAT IS INCOMPLETE 

A small number of functions that can be simulated by 

Iterating Functions apparently cannot be simulated by any 

APL@CRMS Scalar Instruction Set Scalar Expression. This 

appears to be caused by minor oversights in the selection of 

the APL@CRMS "base set" ~f scalar instructions- One example 

appears to be the "translate right operand if the left operand 

is zero(false}, else pass right operand unchanged" dyadic 

scalar function ■ This function, which will be called 

added to Translate2 and be denoted as " ■ TRANS2.", could be 

both the APL@CRMS Scalar Instruction Set and to the set of 

mixed scalar primitives, and perhaps should be- The addition 

would make it possible to implement many functions as SE's 

which cannot now be implemented as SE's. One such function is 

discussed in the next paragraph. 

As was earlier mentioned, APL 360 does not permit arrays 

to contain both numbers and characters. APL@CRMS on the other 

hand, does permit these mixed arrays. Unfortunately the 

APL@CRMS Scalar Instruction 

sufficiently considering what 

Set was developed without 

scalar functions should be 

provided to act on mixed arrays. All newly considered scalar 

functions must therefore be implemented as SE's or !F's. 

Usually, the IF implementation is almost trivial; whereas the 

SE implementation is next to impossible-
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Consider the dyadic scalar function called Add2, defined 

as follows: The left operand, L, must be numeric; the right 

operand, R, may be numeric or character; RESULT is the sum of 

Land R if R is numeric, otherwise RESULT is the character in 

1 -ADD2. 'I=' 5 & for example, 

would return the three element mixed vector, 'I='6. And, 

(0 0 1 17.3 2) .ADD2. '2x' 3 '=' 6 

would return the five element mixed vector, '2x'4'='8. Add2 

is easy to implement as an IF. The Element Iteration might 

look like: 

RESULT:=L 

EXIT IF --ID-L 

RESULT:=L+R 

& Exit if character­

& Else compute sum. 

Because of the conditional exit, this IF has no dual. In 

fact, I doubt that Add2 can be implemented as any SE. Add2 

can be implemented, however, as the following Scalar 

Instruction Set union Translate2 Scalar Expression: 

T.TRANS2. (TxL) + (T:=.ID-R).TRANS2.R 

Add2 is one of many scalar functions which probably should be 

made available to act on mixed arrays. Other similar 

functions are Minus2, Times2, Power2, Logarithm2, and 
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Maximum2. None of these appear to be implementable as SE's. 

All can be implemented as IF's, trivially. And, all could be 

implemented as SE's if the Scalar Instruction Set included 

Translate2. 

A FUNCTION THAT IS NOT QUITE SCALAR 

Consider the monadic"?" primitive (Roll): 

& assigns to R the Roll of y. 

Each element in Y must be a positive integer. R has the same 

shape as Y, and each element in Risa pseudo-random integer 

between one and the corresponding element in y. For example, 

? 10 10 2 & might return the vector 6 1 2. 

To the casual observer, monadic "?" looks like a scalar 

function- But, easily unnoticed by the casual observer is 

what will be called the "rule of repeatable pseudo-random 

number generators." Namely, the next usage of the generator 

accesses a so-called seed, which was set during the last 

usage. Thus, the elements in the result of monadic"?" cannot 

be computed in parallel, but must be computed one-by-one, and 

in some proper sequence. 19 

Monadic "?" cannot be simulated by any Scalar 

Expression. A formal justification of this statement must 

191n APL@CRMS, the monadic"?" sequence is right-to-left. 
The expression, "?3 4", for example, first processes the 4 
(and sets the seed), then accesses the seed while processing 
the 3. Thus, for any vectors A and B, "?A,B" is functionally 
identical to "(?A),?B"• 
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wait until after the concepts of multiple- and single­

instruction Element Iterations are introduced. 

C FORTRAN-IZED EXAMPLE OF AN ELEMENT ITERATION. 

DO 10 I e 1,N 
TI =C ( I ) -D ( I ) 

10 A(I)=B(I)+TI 

The "I e 1,N" notation means the programmer is convinced the 

result, A, is independent of the order of iteration. 

An Element Iteration, like the above example, only with 

more than one APL@CRMS scalar instruction per loop is called a 

multiple-instruction Element Iteration. Element Iterations 

with exactly one such instruction per loop are called single­

instruction Element Iterations. 

Assertions:--

--Each function in the APL@CRMS Scalar Instruction Set 

performs a single-instruction Element 

internally. 

Iteration, 

--All Scalar Expressions are functionally equivalent to 

a permutation of 

Iterations. 

instruction 

And, all 

Element 

single-instruction 

permutations of 

Element 

single-

Iterations are functionally 

equivalent to a Scalar Expression. 
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C FORTRAN-IZED EXAMPLE OF A PERMUTATION 
C OF SINGLE-INSTRUCTION ELEMENT ITERATIONS. 

DO 20 I e 1, N 
20 T(I)=C(I)-D(I) 

DO 30 I e 1,N 
30 A(l)=B(l)+T(I) 

Notice the temporary, T. This large vector was ~issing from 

the previous example- Single-instruction Element Iterations 

almost always require more temporary storage than functionally 

equivalent multiple-instruction Element Iterations-

The previously mentioned "?" function cannot be 

simulated by any Element Iteration due to the "rule of 

repeatable pseudo-random number generators": The result of 

the Roll function is dependent upon the order in which the 

elements of the result are computed. Thus, the Roll function 

cannot be simulated by any Iterating Function (or by any 

Scalar Expression, which goes without saying). Indeed, Roll 

is not a scalar function at all, since it violates the 

previously defined Fundamental Criterion of Scalar Functions. 
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A SCALAR FUNCTION THAT IS TOO COMPLEX 

The dyadic "0 ti scalar primitive (Circular Function) is 

defined as follows: 

XoY & is Tanh y if X=7 

& Cash y if X=6 

& Sinh y if X=5 

& Sqrt l+YxY if X=4 

& Tan y if X=3 

& Cos y if X=2 

& Sin y if X=l 

& Sqrt 1-YxY if X=0 

& Arc Sin y if X=-1 

& Arc Cos y if X=-2 

& Arc Tan y if X=-3 

& Sqrt (-l)+YxY if X=-4 

& Arc Sinh y if X=-5 

& Arc Cosh y if X=-6 

& Arc Tanh y if X=-7 

& "DOMAIN ERROR" otherwise 

The APL@CRMS implementation of Circular Funstion is sort 

of a hybrid between the Iterating Function and Scalar 

Expression methods- The Circular Function implementation 

currently has a front-end which dispatches to:--
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--The s+x th SE, if Xis a singleton integer between -7 

and +7, or 

--The Circular Function Iterating Function, if X is 

non-singleton, or 

--The "DOMAIN ERROR" trap generator, otherwise. 

Thus, taking the SIN of an entire array, 

loARRAY 

causes a dispatch to the SIN, or the 8+1 = 9 th , SE. 

At an earlier time, the circular function was 

implemented as one very long SE, which employed the previously 

discussed SE conditional branch approximation ■ This SE was 

unpardonably inefficient, both time-wise, and space-wise. The 

time-inefficiency was no surprise, but the space-inefficiency 

certainly was!! 
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Dyadic SE/ IF Efficiency 

Monadic scalar functions are not treated separately in 

this section because they may be thought of as special cases 

of dyadic scalar functions: the case where the left operand 

is a scalar constant. So, many of the conclusions which will 

be reached about dyadic SE's and IF's apply to monadic SE's 

and IF's, too. We will be very interested in the relative 

efficiencies of SE's and their duals-

THE SCALAR OPERAND MICROCOSM 

Before tackling the more general case, let's consider 

the restricted case of scalar-bound source operands. Here, 

all SE intermediate results are,scalars. The same can be said 

for all IF intermediate results, too- The space required for 

both implementations is equivalent, although negligible- The 

APL@CRMS IF implementation, however, necessarily takes more 

time than its dual, due to the overhead of the IF front-end 

and back-end parts. 

USEFUL TERMS 

The phrase, outstanding temps, denotes the maximum 

amount of space, in words, allocated during a given stage of 

SE or IF evaluation- Outstanding temps does not include space 

used for the source operands, as these must be allocated under 

any algorithm- The phrase, max temps, is MAX(outstanding 
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temps), taken over all stages in a SE or IF evaluation. 

The lett~rs F, S, and R, are the amounts of space used 

by the first, second, and result operands, respectively. 

Outstanding temps are often linear functions of F, Sand R; 

such as 2F+3R. Outstanding temps can sometimes be determined 

syntactically. It is safe to assume that singletons take up 

negligible space. 

IF SPACE-EFFICIENCY 

IF's are free to modify their source operands since 

these are passed by value in APL@CRMS. (There would be no 

reason to pass these operands by value if APL@CRMS contained 

instructions to index the r th element of any APL variable, 

independent of dimensionality. If such instructions existed, 

the operands could be passed by reference, instead, since they 

need never be modified by IF's. The SPACE-EFFICIENCY affect 

of the proposed instructions is mentioned later.) In 

practice, these modifications always yield variables of 

approximately the same size as the passed operands. This is 

because the IF's ravel and reshape passed operands. Once an 

operand has been ravelled or reshaped, the original operand is 

discarded. The newly created variable effectively replaces 

the original operand. Outstanding temps, however, will 

momentarily grow by the amount of space required by the newly 

created variable- We will assume for now anyway, that no 

manipulation is performed in-place. 

- -- ------- ---
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We will find the outstanding temps for each IF stage, 

then compute max temps. 

Step[l]: Check shapes for conformability. 

= negligible). 

(Outstanding temps 

Step[2]: Dispatch to one of four Cases:--

Step [ 3 J : 

Case[A] Generate "RANK ERRORM or "LENGTH ERROR" 
traps. Exit- No result is returned. 
(Outstanding temps= negligible). 

Case[B] 
Step[)]. 

Both operands are singletons- Go to 
(Outstanding temps= negligible). 

Case[C] Both operands are identical non­
singleton arrays. Ravel the first operand into 
a vector. Then ravel the second operand into a 
vector. Go to Step [ 3]. ( Outstanding temps = 
F=S=MAX(F,S), since each original operand is 
discarded soon after it is ravelled-) 

Case[D] One operand is singleton, the other is 
not- Ravel the non-singleton- Go to Step[)]. 
(Outstanding temps= R). 

Exit if empty result• Initialize the loop counter. 

Index an element from neither, one, or both vectors 

depending on whether both, one, or neither source 

operands are singletons, respectively. Perform an 

Element Iteration- Store into an element of the 

result. Update then test the loop counter. 

Conditionally branch back. (Outstanding temps = 

negligible, since all values are scalar.) 

Step[4]: Reshape the result• Exit- (Outstanding temps - R). 
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Max temps~ MAX(R, MAX(F,S)) = MAX(F,SJ. 20 

both 

But, when Case[CJ or Case[D] is entered because one or 

non-singleton operand is a vector, a sufficiently 

observant IF can reduce max temps to negligible, since nothing 

must be ravelled--as in Case[CJ or Case[DJ--or reshaped 21 

as in Step[4J. In fact, the only time max temps has to be as 

large as MAX(F,S) is when at least one non-singleton source 

operand has a rank of at least two. This happens very rarely. 

(Max temps would always be negligable if the proposed index 

instructions existed.) 

SE SPACE-EFFICIENCY 

Scalar Instructions used in SE's implicitly use the 

microcoded dynamic storage allocator to acquire space for 

their result operands ■ Scalar instructions also implicitly 

use the dynamic storage de-allocator to free space held by 

source operands, but only if they were unassignea 22 

20usually, R = MAX(F,S). The exception, R = MIN(F,S), 
will sometimes occur when one source operand is an empty 
array, and the other is a singleton ■ The exception occurs 
rarely, and when it does, the difference between F and Sis 
small ■ 

21The APL@CRMS microprogram could easily be changed so 
.that all no-op reshapes, at least on vectors, are performed 
in-place ■ At my urging, the microprogram was changed to ravel 
a vector in-place ■ 

22The APL@CRMS microprogram uses reference counts to 
track how many variables are assigned to the same data. 

keep 
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temporaries. Source operand space is freed only after the 

scalar instruction's result operand has been allocated and 

completely computed. Thus, all source and result operands 

must be simultaneously allocated, briefly. Consider, for 

example, the real-time space requirements for this SE: 

F + s + F + F 

& ORDER OF EXECUTION: 3 2 1 

& SPACE FOR SOURCE OPERANDS: F+:R S+F F+F 

& SPACE FOR RESULT OPERAND: :R R F 

& OUTSTANDING TEMPS: :R+~ :R+Y p23 

Max temps= MAX(:R+F,:R+R) 

Parentheses imply stacking. This stacking can increase 

max temps because the result of the last instruction is no 

longer always released at the end of the next instruction-

(F + s) + F + F 

& ORDER OF EXECUTION: 2 3 1 

& SPACE FOR SOURCE OPERANDS: F+S lHF F+F 

& SPACE FOR RESULT OPERAND: R R F 

& OUTSTANDING TEMPS: R+F :R+i+y F 

Max temps= R+R+F 

In this example, inserting parentheses increased max temps. 

23The slash-out means that the source operand's space is 
to be released at the end of the current instruction. 
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Sometimes, however, inserting parentheses can decrease max 

temps: 

F+F+S 

(F+F)+S 

& max temps= R+R 

& max temps= f+R 

If F were a singleton, ands were a large array, the 

parenthesized expression above would have lower max temps than 

the unparenthesized expression. 

Definition:--

To increase a SE's segregation means to delay the 

intermixing of a SE's operands. As a SE becomes more 

segregated, more of the intermediate results depend on 

fewer and fewer source operands. 

The second SE of the previous example is more segregated than 

the first. The next subsection will point out other 

advantages to segregating the first and second operands. 

In conclusion:--

--Max temps for SE's, unlike IF's, are strong functions 

of syntax. 

--Most SE's, unlike most IF's, take considerably more 

than negligible space for max temps. 

--IF's, then, are generally more space-efficient than 

their duals. 
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TIME-EFFICIENCY 

IF's are generally less time-efficient than their duals. 

This is mainly because:--

--SE's never ravel or reshape arrays. 

--Microcoded loops are by far faster than software 

loops. 

--The number of elements processed in each microcoded 

loop, unlike an IF loop, is not necessarily as large 

as the number of elements in the final result: An 

SE's intermediate results may be smaller than its 

final result. This very important concept can be 

exploited by segregating the operands of non-monadic 

SE's. For example, if A or B, but not both are 

singletons, and neither are empty, 

(A+AxA) + (B+BxB) & is faster than 

A+B + (AxA) + (BxB) 

especially when A is singleton, and Bis a monstrous 

array. 

The APL@CRMS implementation of the dyadic "e" scalar 

primitive (log to a base), is a SE that uses the monadic "e" 

SE (natural log of): 

1 xey & log, base X, of Y, is implemented as 

(eY) • ex & which uses the natural logarithm, 

& which is, in turn, a very large SE. 
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Not one scalar instruction's result--except for the result of 

the last division--depends on both X and y. 

The conclusion that SE's are more time-efficient than 

their duals still leaves an important question unanswered: Are 

SE's more time-efficient than IF's. The horizontal logic of 

IF's may contain conditional pranches. Thus, it would appear 

that SE's become less time-efficient with respect to IF's as 

the amount of conditional logic increases. There is a hard­

to-define crossover point, but the APL@CRMS experience has 

been that only one scalar function contains enough conditional 

logic to justify being simulated horizontally aq an IF (for 

solely time-efficiency reasons). That function is the 

extremely complex Circular Function. 
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Conclusion 

The vertical implementation has been covered much more 

extensively than the horizontal implementation in this paper. 

The horizontal implementation, however, is already well­

understood and heavily used, whereas the vertical 

implementation is not. Vertical programming today is rare, 

except perhaps on array processors and non-backup pipelined 

processors. Yet, 

expressions are both 

it has 

faster 

equivalent horizontal loops. 

been our experience that vertical 

and clearer than functionally 

This paper has been a qualitative study of various 

aspects of the vertical and horizontal implementations of 

scalar functions- As such, no single, unifying conclusion has 

been reached. The various, somewhat-related conclusions which 

were reached, however, can be relevant to a wide assortment of 

professions. 

Programmers, for example, should try to look upon the 

vertical, array processing, programming style as a clear and 

concise repre~entation. 

Arithmetic-Unit developers may now be able to justify 

special case logic to handle frequent multiplications by zero 

or one. 

APL implementers may attach new importance to agreeing 

to a standard evaluation of pornographi~ expressions, since 

multiple assignments can significantly reduce a vertical 
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program's complexity. Perhaps the APL@CRMS evaluation should 

be the standard. 

Array processor designers, who want to simplify vertical 

programming, should design a "base set" of scalar instructions 

which is as complete as possible, yet with a minimal number of 

hard-to-anticipate properties. 

Array processing compiler writers may see the need for 

an optimizer which maximizes object code segregation by 

rearranging scalar functions in expressions-

There are many unanswered questions related to this 

study. A few of these questions which merit further research 

are: 

--How useful are scalar functions with three or more 

operands? Are monadic and dyadic scalar functions 

sufficient'? 

--When should a scalar function be implemented as a 

blend of the horizontal and vertical ·methods'? The 

Circular Function is implemented this way. 

--Why isn't it obvious when a set of scalar functions 

is incomplete'? Why was it so hard to predict the 

effect of the new, mixed array, data type? 


	Table of Contents
	1. Introduction
	2. Definitions and Formalizations
	3. APL @CRMS Standards
	4. The APL@CRMS Scalar Instruction Set
	5. Some Nitty-Gritty Vertical Examples
	6. Two Advantages of Programming Vertically
	7. Two Useful Vertical Programming Tools
	8. The APL@CRMS SE Implementation
	9. Reducing the Scalar Instruction Set
	10. Three Scalar Expression Limitations
	11. Dyadic SE / IF Efficiency
	12. Conclusion



