
SIMPLE LANGUAGE SYSTEM

TERMINAL COMMANDS

REFERENCE MANUAL

Mark Greenberg

May 1975

Systems Group

Technical Document

Center for Research in Management Science

University of California

Berkeley

This work was done as part of the Systems Development effort under
National Science Foundation Grants GS-32138 and SOC75-08177-Balderston.

Col')'

l.O Introduction

The SIMPLE programming-language system provides facilities for

creating, editing, compiling, executing, and debugging programs

written in the programming language SIMPLE. The text editing

facilities are generalized and therefore can be used to create and

edit any textual store of information, not just SIMPLE programs.

This reference manual describes how to use the SIMPLE language

system, giving details of all the commands that can be typed to the

system from a terminal. Users interested only in general text editing

should not read beyond Section 4.2 (text-editing commands) in this

manual. Subsequent sections give details of commands used to compile,

execute, and debug SIMPLE programs.

Other related systems-group technical documents are:

LINE COLLECTOR REFERENCE MANUAL

SIMPLE LANGUAGE SPECIFICATION REFERENCE MANUAL

INSTRUCTION PROCESSING UNIT FOR THE STI-1:PLE OBJECT LANGUAGE

This SIMPLE language system was designed and implemented by

Charles Grant, Mark Greenberg, and David Redell.

l

2.0 Program Organization

At any time, the SIMPLE language system is working on a single

program with a name specified by the user. The information associated

with the program is organized into three segments (A segment is a

linear sequence of data which can be identified by name.):

text segment - contains text of a program

code segment contains compiled code of program

2

1)

2)

3) debugger segment - contains symbol tables and other information

required to provide debugging features

The code and debugger segments are created only when the program is

first compiled. Thus, when the SIMPLE language system is used only for

text editing, a program consists of a text segment only.

A program is divided into blocks (which are stored sequentially

within the segments). Block One is called the global block and contains

the global declarations of a SIMPLE program. The first function of the

program is in block Two, the third in block Four, and so on. (By

convention, the function in block Two is the driver function of a

program; it is the function called when a program is executed by the

operating system as a subsystem. It should have no arguments.)

Each block of text is organized into a sequence of one or more lines.

A line is a string of characters (not more than 128) ending with a

carriage-return character. Thus, a program is just a sequence of lines

of text which are divided into groups called blocks.

3.0 Command Structure

When the SIMPLE language system is entered, a colon is printed-­

indicating that the system is waiting for the next command to be typed

by the user. A command is a string of characters terminated by a

carriage return. Upon typing the carriage return, the typed-in

command is interpreted and the indicated action is taken. When the

command is completed another colon is printed, indicating another

command may be typed. The user may type a.head although echoing of

typed characters may be delayed in order to insure that output and

3

echoed input are printed in the correct order. If the user types ahead

too far, a bell will sound for each typed character ignored by the

system. All line-collector features may be used during entry of a

command line. The old line is the previous command line.

A command has the form of a command specification, possibly followed

by one or more arguments separated by blanks. The command specification

is the first two characters in the command line. They indicate which

command is to be performed. Multiple blanks may occur wherever a single

blank is legal. Blanks at the end of a command line are ignored. Blanks

separating the first argument from the two-character specification are

optional. If the command line begins with a blank, it is an immediate

statement (described later).

Several commands separated by semicolons are allowed in one command

line. If a command fails,the remaining commands in that line are not

performed.

Examples of commands are:

:SP PROG

:LT "ABC" 2

:CP

: F()

:LT "ABC" ;WH ;ML

SP command with one argument

LT command with two arguments

CP command with no arguments

4

immediate statement (starts with blank)

three commands separated by semicolons

Many commands will have arguments which specify a text-line address

or a range of text lines. These will be described in detail.

5

3.1 Addresses

Addresses are used by theSIMPLE language system commands to locate

text within a program. An address uniquely identifies a line of text

within a program by specifying a block and a line within a block. An

address consists of a string of characters which are interpreted by the

SIMPLE language system. At any time, there is one line of text within

a program which is singled out as the current line. In general, the

current line is the last line which had some action performed on it.

In ALL commands that take an address as an argument, if the argument

is omitted then the current line is assumed by default.

The first line of a block can be addressed by name or by nw:iber

enclosed in slashes. For example,

:LT /3/ addresses block 3, line 0

:IT F3 addresses line¢ of block with
function name F3

The name for block One is GLOBAL. Function names for blocks are legal

only if the program has been compiled and the names have not been made

invalid by subsequent creation or destruction of blocks.

Lines can be addressed relative to the beginning of a block.

For example,

:AT /5/+7

:ML F3+8-3

:DT /2/3

addresses block 5, line 7

addresses the line three lines before
the eighth line (i.e., line 5) of block
with name F3.

addresses block 2, line 3. If the plus
sign is omi~ted, it is equivalent to
/2/+3.

6

Lines can be addressed relative to the current line. For example,

:EL 1

:LT -3

:AT 1-2

:AT +l

addresses the line after the current line

addresses the line three before the
current line

addresses line before the current line

addresses line after the current line

Lines can be addressed by their contents. For example,

:LT /5/+"ABC"

:DT "XYZ"

:CT -"PQ"

addresses the first line that contains
ABC after the first line of block 5. If
line¢ and line l of block 5 both contain
ABC then line 1 is addressed, since the
"context search" starts after the
previously addressed line.

addresses the first line after the current
line that contains XYZ

addresses the first line before the
current line that contains PQ

Lines can be addressed by a label at the beginning of a line. A label is

a sequence of non-blank characters preceded on the line only by blanks

and immediately followed by a blank, colon, or carriage return. For

example, the following text· lines have labels:

LI: FUNC()

A B

END

Examples of label.addressing are:

:AF /6/+:L2:

:IT -:END:

label is LI

label is A

label is END

addresses first line that contains label
L2 after the first line of block 6

addresses the first line before the
current line that contains the label END

The last line of a block can be addressed. For example,

:LT /5/+$

:ML $-1

addresses the last line of block 5
addresses the line before the last line
of the block that contains the current line

- ---- -------------

In general, a line address is a sequence of line address elements

separated by plus or minus signs. Plus signs may be omitted where not

syntactically ambiguous. 1\n address element may be:

1) a block number enclosed in slashes

2) a function name for a block

3) a number which is a relative line displacement

4) a string enclosed in double quotes for context searches

5) a string enclosed in colons for label searches, or

7

6) a dollar sign for addressing the last line of the current block

Elements of types one and two are absolute while elements of types three

through six address relative to the address determined by the elements

to its left. The first element in an address is relqtive to the current

line.

For the purpose of addressing, the first line of a block immediately

follows the last line of the preceding block and the first line of the

first block of a program immediately follows the last line of the last

block of a program. For example,

:EL /1/-1 addresses the last line of the program

:IT /4/$+1 addresses the first line of block 5

:AT /7/-1 addresses the last line of block 6

3.2 Ranges

Some commands take a range as an argument. A range specifies a

continuous sequence of text lines within a program. A range can be

specified in four ways:

1) a pair of addresses separated by blanks. This specifies all

lines between the first address and the second address,

inclusive. The first address is determined relative to the

8

current line and the second address is determined relative to

the first address. The second address must not specify a

line in the program before the line specified by the first

address.

2) a single address. This specifies the single line addressed.

3) an "at" sign(@). This specifies all lines in the program.

4) no argument. This specifies the current line.

Examples of ranges are:

:LT /5/ /6/$

:DT (/J 2

:DT 1

:CB@

:DT

specifies all lines of block 5 and
block 6
specifies the current line and
lines after the current line

specifies the line after the current
line

specifies the entire program

specifies the current line

9

4.o Commands

There are over forty different commands that can be executed in the

SIMPLE language system. The details of each command are given in the

following sections.

In the form given for each command:

1) Upper-case characters are literal characters in the command

line.

2) Lower-case names refer to constructs that are described in

other parts of this document.

3) A construct inside square brackets means the construct is

optional.

4) Constructs separated by vertical strokes indicate that any one

of the constructs should be specified; and

5) § is a carriage return and @ is a line feed.

10

4.1 Program Commands

Programs are specified by program-name. A program-name is a sequence

of simple names separated by periods. A simple name is any sequence of

characters not containing a period, asterisk, or carriage return (generally,

just alphanumeric characters). A program-name uniquely specifies a search

rule for finding the program and starting the search with the user directory

for the logged-in user. If the program begins with a period, then the

search begins with the system's root directory. If the program begins with

an asterisk, then the search begins with the user's scratch directory. All

segments in the scratch directory are destroyed when the user logs off the

system. Assuming that JONES is the logged-in user, some examples of program.-

names are:

PROGl

DI.FROG

.SMITH.TEST

*TEMP

find the segments of program PROGl in
directory JONES

find directory DI in directory JONES
and then find the segments of program
FROG in directory DI

find the segments of program. TEST in
directory SMITH

find the segments of program TEMP in
the scratch directory

The names of the text, debugger, and code segments of a program are

formed by appending a number sign (#), slash (/), or "at" sign (@),

respectively, to the end of the program-name.

Select-Program Command

form : SP program-name e
Causes the progra.~ with the specified name to be selected. All

subsequent commands will act upon this program. A program must be

selected before any command can be performed on it. A new program can

be selected at any time.

11

New-Program Command

form : NP program-name @

Causes the program with the specified name to be selected. If the

program did not exist, then a text segment for the program is created.

The text segment is initialized to a single line in block One containing

END. Warning!! If the program already existed, then its previous

contents are lost.

Destroy-Program Command

form :DP €)
Causes all the segments of the specified program to be destroyed.

• The specified program must be the same as the selected program or else

the command will fail.

12

4.2 Text-Editing Commands

Toe text-editing commands provide the ability to construct a program

by listing lines of text, adding new lines of text, deleting lines of

text, modifying existing lines of text, moving lines of text from one

part of a program to another or from another program, and performing

-string substitutions on the text.

List-Text Command

form : LT range @
Causes all lines of text in the specified range to be listed on

the terminal. The current line becomes the last line typed out.

Append-Text Command

form :AT address @
Causes the subsequently typed lines to be appended after the

specified address in the text segment. Upon typing the carriage return,

the SIMPLE language system goes into "enter-text mode." Any number of

lines of text can be typed in enter-text mode separated by carriage

returns. Typing a line feed at the end of a line, instead of a carriage

return, causes enter-text mode to be exited. The system will then prompt

a colon and wait for the next command. A line feed typed immediately

after a carriage return will not cause a blank line to be placed into

the text. All line-collector features may be used during entry of a text

line in enter-text mode. The old line is always the last line typed on

the terminal. The current line beco~es the last line appended.

13

': t

For example,

' :LT /2/ $ €)
ABC

-} text before DEF

GHI

:AT /2/+l e append text command

123 er

456 lf

:LT /2/ $

ABC

DEF

123 text after

456
GHI

Insert-Text Command

form : IT address e
This command has an ·effect identical with that of the Append-Text

(AT) command, except that- the entered text is inserted before the line

at the specified address and the current line becomes the line after

the last inserted line.

Append-Function Command

form :AF address @
This command has an effect identical with that of the Append-Text

(AT) command, except that a new block is created after the block of the

specified address and the entered text becomes Jhe contents of this new

block. The current line becomes the last line of the new block.

14

Delete-Text Command

form :DT range @
Causes all lines in the specified range to be deleted from the

text. The current line becomes the line that was before the deleted

text. The range of lines must all be within the same block. If the

range specifies all the lines in a block, then not only are all the

lines deleted, but the block itself is also deleted; the current line

becomes the last line of the previous block. It is not legal to delete

all the lines of block One. For example,

:LT /3/ $ €)
LINEl

LINE2

LINE3

:DT /3/+l @
:LT /3/ $ @
LINEl

LINE3

Un-Delete Command

form :UD €)

1text before

delete-text command

j text after

If the immediately preceding command was a Delete-Text (DT) command

then this command totally undoes all effects of that Delete-Text cormnand.

Otherwise, the command has no effect. This command provides protection

against accidental deletions.

15

Modifv-Line Command

form :ML address @
The addressed line is modified under control of the line collector.

The addressed line is the old line. The resulting new line replaces

the previous contents of the addressed line. For example,

:LT /2/+2 @
ABCD

:ML @
XBCD @
:LT @)
XBCD

Edit-Line Command

line before

modify line

line is modified

line after

form : EL address @
Has exactly the same effect as the Modify-Line (ML) command except

that the line to be modified is typed out just before the line

modification begins. For example,

:LT /3/+3 @
ABCD

:EL

ABCD

AXCD

:LT @
AXCD

line before

edit line

typed-out line

line is modified

line after

16

Copy-Text Command

form :CT address-@

SOURCE RANGE: range @
Causes a copy of the lines of text in the specified range to be appended

after the line at the specified address. The lines at the source range

are not changed or deleted. The specified address must not be inside

the specified range. The current line becomes the last line of the

appended text.

Copy-Function Command

form :CF address @
SOURCE RANGE: range @

Has exactly the same effect as the Copy-Text (CT) command except

that a new block is created after the block of the specified address and

a copy of the text is placed in this block. The current line becomes

the last line in the new block.

Transfer-Text Command

form :TT address @
SOURCE PROGRAM: program-name @
SOURCE RANGE: range §

Has exactly the same effect of the Copy-Text (CT) command except

that the text lines are copied from the specified source program. The

specified source range is determined in the context of the source

program. This command provides a way of copying text from one program

to another.

Transfer-Function Command

form :TF address@

SOURCE PROGRAM: program-name @
SOURCE RANGE: - range ®

Has exactly the same effect as the Copy-Function (CF) command

17

except that the text lines are copied from the specified source program.

The specified source range is determined in the context of the source

program.

Replace-Functions Command

form : RF program-name @
Provides a method for copying the text of entire blocks from the

specified program to the currently selected program. Every text block

in the specified source program is copied into the currently selected

program. If either program is globally valid, then block One is not

transferred. If both the source and destination programs are globally

. v.alid, and the function name for the source block matches the function

name for some destination block, then the text of the source block

replaces the text of that destination block. Otherwise, a new block is

created at the end of the destination program and the source text is

placed in this new block. The source program is not modified by this

command. The current line does not change. A listing is typed out as

each block is either "replaced" or "appended. rr

Substitute Command

form :SU range @
OPTION: [SIC IL] @
SEARCH FOR: search-string @
[REPLACE WITH: replace-string @ J

18

The specified range is searched for occurrences of the specified search-

string. The search string and replace string may be any string of

characters terminated by a carriage return. The option S, C, or L

specifies what action is to be taken when each occurrence of the search

string is found. For the S (substitute) option, the search string is

replaced by the replace string and the search continues with no type out.

For the C (confirm) option, the line address and the text line are typed

out with carets delineating the occurrence of the search string within

the line. The user now must confirm that he wishes the replacement by

the replace string to occur by typing an S. Typing any other character

will inhibit replacement. The search then continues. For the L (list)

option,. the address and text lines are listed for each occurrence of the

search string but no substitution occurs. For all three options, the

number of occurrences of the search string found is typed out at the end

of the scan. If a string substitution would make the resulting line

longer than 128 characters, then that substitution will not occur. The

current line becomes the line where the last occurrence of the search

string was found or is unchanged if there was no occurrence.

4.3 Compilation Commands

A program must be globally and locally valid before it can be

executed. Initially, a program is globally invalid. A successful

compilation makes it valid. Modifying the text of a block makes that

block locally invalid. Creating or deleting a block makes the whole

program globally invalid.

Compile Command

form :CP €)
Causes the program to be compiled. If the program is globally

invalid then the entire program is compiled. If the global block

19

(block One) or any function block headers had compilation errors then

the program is left globally invalid and the individual function blocks

will not be compiled. If globally valid, then only locally invalid

function blocks are recompiled. A function block is left invalid if it

had any compilation errors.

Set-Invalid Command

form :SI €)
Makes the selected program globally invalid.

Measurement-Mode Comm.and

form :MM number @
The measurement mode for the compiler is set to the value of the

specified number. Initially, measurement mode is disabled. See Appendix

D for measurement-mode details.

20

4.4 Program Execution Commands

The state of a program that is in execution or has been in execution

is entirely stored in a pair of segments called the data segment and the

capability segment. All program execution and debugging comm.ands operate

on the currently recovered state. A currently recovered state is

established by the DO or RS commands described later.

A program may be in execution as either a primary computation or as

a secondary computation. When a primary computation is evoked: (1) all

attached terminals, open segments or created processes from previous

computations are released, closed, and destroyed, respectively; (b) a new

process is created for the user program to run in; (c) the program stack

is reset; (d) the capability segment is cleared; and (e) control is

transferred to the program by executing the specified immediate statement

in the global context of the initialized state. If the :primary computation

stops because it trapped, encountered a breakpoint, or a panic was hit,

then a secondary computation can be initialized. When a secondary

computation is initiated, it does not effect the state of the primary

computation; nothing is initialized. When a- secondary computation stops,

for whatever reason, its entire state is lost and the state of the stack

before the secondary computation is recovered. However, the values of

global variables may have been changed by the secondary computation.

An immediate statement may be any expression legal in the SIMPLE

language. Unless the expression is a function call or an assignment,

the result value of the expression is typed out on a normal completion

of the computation initiated with the immediate statement. Upon abnormal

completions a stop message is typed out giving the address where the

computation stopped and the reason for the stop.

Do Command

form :DO immediate-statement @
Causes the program to begin execution as a primary computation.

The specified immediate statement is executed in the global context

(i.e., not in the context of any function). The immediate statement

21

can be any expression legal in the SIMPLE language. Normally, this will

be a function call on the driver function of a program. For example,

:DO F() (@)
F+l7: BREAK

start primary computation

stop message

Immediate Statements

form immediate-statement @

22

Normally, an immediate statement preceded by a blank is executed

as a secondary computation. However, if no primary computation exists,

then it is executed as a primary co~putation. The secondary immediate

statement is executed in the context of the current function

activation. Normally, this is the function executing when the primary

computation stops, but it can be changed using the IN command. If a

secondary immediate statement executes a GOTO, RETURN, or FRETURN

operation, then control is returned to the primary computation.

Go Command

form :GO [number] @
If the primary computation has stopped at a breakpoint, then

execution of the primary computation is resumed by the GO command.

The number, if present, (assumed one if omitted) indicates the number

of breakpoints that must be encountered during execution before the

computation will again stop at a breakpoint.

23

4.5 Breakpoint Commands

Breakpoints Tiay be set on any line in a program that begins with

an executable statement. If a breakpoint is set on a line, then execution

of the computation is stopped just before that line would be executed.

Set-Breakpoint Command

form :SB address @
Causes a breakpoint to be set at the specified address. The

current line becomes the addressed line.

Clear-Breakpoint Command

form :CB range @
Causes all breakpoints in the specified range to be cleared.

The current line becomes the last line of the specified range.

List-Breakpoints Command

form : LB range @
Causes the addresses of all breakpoints set within the specified

range to be printed out. The current line becomes the last line in the

specified range.

24

4.6 State Commands

A current state can be established with an RS command or by

starting a primary computation.

Whenever a primary computation is initiated, the current state is

established as a data segment and a capability segment in the scratch

directory with names derived by appending a dollar sign or a colon,

respectively, to the rightmost simple name of the currently selected

program name. For example,

program name

PROG

JONES.LIST.TEST

state segment names

*FROG$

*TEST$

*PROG:

*TEST:

Recover-State Command

form :RS [name] e
Causes the current state to be the two segments with names formed

by appending a dollar sign or colon, respectively, to the specified

name. If the specified name is omitted, then the rightmost simple

name of the currently seleeted program name is assumed.

Save-State Command

form :SS name e
Causes the current state segments to be copied to two segments

with names formed by appending a dollar sign and a colon to the specified

name.

25

4.7 Debugging Commands

Display-Stack Command

form :DS [P] @
Causes the nested state of function activations in the stack of

the primary computation to be typed out. Each line is the address

from which the next function was called. The top line is the address

where the computation is stopped. If the P option is specified, then

the function-base relative P-counter values of the calls are also typed

out in octal. For example,

:DS @
Fl+l2

GFUNC+2

DRIVER+20

In Command

form

address where progr.am stopped

address of call on Fl

address of call on GFUNC

: IN function name [number-n] @
Whenever the primary computation stops execution, the current

function activation becomes the top activation on the stack. The IN

command allows selection of a different activation on the stack as

the current activation. The new current activation is determined by

scanning from the top of the stack for then-th occurrence of an

activation for the specified function name. If number-n is omitted,

then one is assumed.

Print-Value Command

form :PV value-name [D!B]

Causes the named value to be printed. If the value-name is

defined for the current function activation, then that value is

26

printed. Otherwise, if the value name is globally defined then the

global value is printed. The value is printed in octal as two half­

words (4 haJ_f'words if value is of type descriptor) unless a Dor B

option is specified. The D option causes value to be printed in

decimal as a 32-bit word (2 words if descriptor). The B option causes

the value to be printed in octal as four bytes (8 bytes if descriptor).

Print-Segment Comm.and

form :PS [segment-name] [lower-bound] [upper-bound] [DIB] @
Causes the values of the words of the specified segment in the range

specified by the lower-bound and upper-bound to be printed. The lower­

bound and upper-bound must be octal addresses. If the bounds are out of

the segment range they are adjusted to be in range. The upper-bound

should not be less than the lower-bound. If the upper bound is omitted,

then it is set to the lower-bound. If the lower-bound is omitted, then

it is assumed to be zero. If the segment-name is omitted, then the

segment specified in the previous PS command is assumed. A D, B, or null

final option causes words to be printed in decimal, as four octal bytes, or

as two octal half'words, respectively.

27

Print Data-Segment Command

form :PD [lower-bound] [upper-bound] [DIB] e
Has exactly the sa..me effect as the Print-Segment (PS) command

except that the values are printed from the data segment of the currently

recovered state.

Fill-Segment Command

form :FS segment-name address value-list e

Causes the values specified in the value-list to be stored in

successive words of the specified segment starting at the specified

address. A value-list contains an arbitrary number of values separated

by blanks. A value is specified as two octal numbers separated by a

colon. The left number goes in the left half of the word and the right

number in the right half. The address and new value of each modified

word is printed.

28

4. 8 Miscellaneous Cornmands

Exit Command

form :EX(§)

Causes SIMPLE language system to be exited.

Where Command

form :vm @
Prints the address of the current line.

Commands-from-Segment Command

form :CS segment-name @
Causes the SIMPLE language system to accept subsequent commands

from the specified segment. The segment should be a text segment. The

successive commands are taken from successive lines of block One of the

segment. The SIMPLE language system will resume taking commands from

the terminal when all commands in block One have been executed or after

an attention panic is hit.

Symbol-Table Command

form :ST name e
Causes the contents of the symbol-table entry for the specified

name to be printed. First, the symbol table for the current function

activation is searched for the name, a..~d then the global symbol table.

Print-Code Command

form :PC address @
Causes the line-table entry and compiled code (as octal halfwords)

for the specified line to be printed. The current line becomes the

addressed line.

29

Select-Runtime Command

form : SR runtime-name @
Causes the program with the specified runtime-name to be selected

as the current runtime. Initially, the standard runtime is selected.

Whenever a globally-valid program is selected with the SP command, the

runtime with which it was globally compiled is selected. The SR command

provides a way of overriding this selection. A program is globally

compiled using the currently selected ru...~time.

Runtime-Mode Command

form :Tu.\1 @
Places the SIMPLE language system in runtime mode. Runtime mode

causes the selected program to be compiled as a runtime, and allows

addressing of programs compiled as runtimes by function name as well as

by block number.

User-Mode Command

form. :UM®

Causes the SIMPLE langauage system to return to user mode (its

initial state) from runtime mode.

30

5,0 Attention Panics

If a computation is not in execution, then hitting the escape key

on the keyboard will cause an attention panic. An attention panic

causes immediate termination of any command in progress. This means

that commands taking a long time to perform their action may be

prematurely terminated. In all cases, a message is printed indicating

what termination action was taken. If an attention panic occurs:

1) During entry of a command line, then the message PANIC! is

printed. The partial command is ignored and the system

prompts for the next command.

2) While in enter-text mode (during IT, AT, and AF commands),

then the message PANIC! is printed. All completed lines are

entered into the text, the last partial line is ignored, and

the system prompts for the next command.

3) While waiting for input in commands that expect input (i.e.,

ML, EL, SU, CT, TT, TF, amd DP commands) no further action

is taken in the command. The message COMMAND ABORTED! is

printed and the system prompts for the next command.

4) During commands that generate lists (i.e., LT, LB, DS, PS, SU,

PD, PC, and RF commands), the listing is terminated immediately.

The message PAl~IC! is printed and the system prompts for the

next command. The listing in the RF command indicates exactly

which functions were copied.

5) During a compilation, the compilation is immediately terminated.

The message COMPILATION ABORTED is printed and the system prompts

for the next command. The compilation can be restarted with

another CP command.

31

6) While a computation is in execution, then the attention panic

can be fielded by the rll.Il~ing program and therefore, the action

taken is determined by teat program. If the running program is

not fielding its own atte~tion panics, then the computation

stops and a stop message is printed.

7) While in commands from se~ent mode, then the system returns to

commands from terminal mode at the end of the current command.

8) In all other cases, the comm.and in progress completes its action,

the message PANIC! is pri~ted, and the system prompts for the

next command.

32

6.0 Debugger Panics

A computation in execution may be immediately stopped by typing a

control right bracket (Jc) on the keyboard, thus causing a debugger

panic. A stop message giving the address of the current line of

execution in computation is printed. If there is not a computation

in execution, then a debugger panic on the terminal is ignored except

that the terminal bell will sound.

APPENDIX A - Command Summary

Program Commands

SP program-name

NP program-name

DP

Text-Editing Commands

LT range

AT address

IT address

AF address

DT range

UD

ML address

EL address

CT address

CF address

TT address

TF address

RF program-name

SU range

Compilation Commands

CP

SI

MM number

Program-Execution Commands

DO immediate-statement

sp immediate-statement

GO [number]

select program

new program

destroy program

list text

append text

insert text

append function

delete text

un-delete

modify line

edit line

copy text

copy function

transfer text

transfer function

replace functions

substitute

compile program

set invalid

measurement mode

execute primary computation

execute secondary computation

continue primary computation

33

Breakpoint Commands

SB address

CB range

LB range

State Commands

RS [name]

SS name

Debugger Commands

DS [P]

set breakpoint

clear breakpoint

list breakpoints

recover state

save state

display stack

34

IN function-name [number] select current function activation

PV value-name [DIB] print value

PS [segment-name] [lower-bou..~d] [upper-bound] [DIB]

PD [lower-bound] [upper-bound] [DIB]

FS segment-name address value-list

Miscellaneous Commands

EX

WH

cs segment-name

ST name

PC address

SR runtime-name

RM

UM

exit language system

where is current line

co~~ands from segment

sy:::bol table print

print code

select runtime

runtime mode

user mode

print segment

print data segment

fill segment

35

APPENDIX B - Runtime Debugging Functions

The following functions included in the standard runtime can be

used to print the values in common data structures of SIMPLE programs

when executed as immediate statements. Two predeclared global variables,

\Mand \R, determine the form of value printout.

\M = 'FI full word

\M = IHI two half words (initial value)

\M = 'BI four bytes

\M = IC I four characters

\R = radix for printout in \M = F, H, or B.cases (initially 8)

Print-String Function

form PS(string)

Causes the contents of the specified string to be printed. Byte

strings are always printed as a string of characters.

Print-Vector Function

form pv(vector [,lower-bound][,upper-bound][,mode])

Causes the specified vector to be printed within the specified range

of indices. The mode, if specified, will override the state of \M. If

no bounds are specified, then the entire vector is printed. If only a

lower-bound is specified, then only that single value is printed.

Print-Reference Function

form PR(reference)

Causes the values pointed to by the specified reference to be printed.

Note: The \Mand \R variables are used to determine the form of printout

for the value printed on normal termination of immediate statement

execution when the immediate statement is not a function call or an

assignment.

backup TAB

copy ESC

skip CTRL

CARRIAGE RETURN accept new line as
input

LINE FEED accept new line as
input, with special
termination flag

TAB advance to next tab
stop

CRMS LINE COLLECTOR REQUESTS

1 2 3 4 5 6 7

\
\

\ \ \

~
Q \ w' \ E \ R' T \ y

\

\
SHIFT,
LOCK

SHIFT

' ' \
\ \ \ \

A\
\ \ \ s ' D \ F \ G \ H

\ \ \
1, \ \ ' \ \ \

' \ \ \
\ z ' X \ C \ v, B \
. I\ \ \

\

\ \
\ \ \ \

\ y> \ y> \ fa \ fa \
\

1,
\ ~\ -,\ "\,;;
\,'ell\~ ,o \y',

\ ½ ~ 0~
,~(), '?\\ \~

(.'i)

\~
\ (.'i)

\ ~ \ \ \
y', \ \ \ \ \

\ \ \ \ \ . .

Ye toggle insert mode

Uc toggle underline mode
C I (same as TAB)

Oc interpret next two
characters as an overstrike

Pc print remaining old line,
concatenate it to new line,
and accept new line

\
\

\

\

8 9 0

u I 0 p

J K L ~
N. M

'
. f

\
\

\
\

\
\

He (same as backspace) no effect

Jc (same as line feed)

Kc concatenate remaining old
line to new line and accept
new line

Lc accept next character without
line collector interpretation

Ne restart input, using new line
as the old line

Mc (same as carriage return)

~
'D
,,.j
~
t:J
H
:>::
c:i

37

APPENDIX D - SIMPLE Program Measurement

The SIMPLE program measurement system allows evaluation of the

time spent in the various functions of a program. In order to use the

measurement facility, the program must first be recompiled globally in

measurement mode.

Example:

:SP FROG
:MM 1 (or MM -1)
:SI
:CP

Any number of the user functions of a program may be specified to be

measured. This may be done by appending MEASURE to the end of the

FUNCTION statement for a function to be measured and then recompiling

the function. Alternatively, a user may specify that all user functions

be measured by recompiling the program globally after doing an 1vM -1

command.

Example:

FUNCTION F(X,Y,) RETURNING VECTORS MEASURE

Three values are maintained about each measured function:

1) The accumulated elapsed real time spent in the function in milli­

seconds. This time is measured from the time the function is called

until it returns or until some other measured function (perhaps a

recursive call on itself) is called. When this function returns,

real time is once again accumulated. That is, time is accumulated

for the topmost measured function on the call stack.

38

2) the CPU compute time spent in the function in milliseconds. It is

measured in the same way as real time.

3) the number of times the measured function is called.

To begin measuring a program, the program must execute a call on

runtime function INITMEAS. It takes a single Boolean-valued argu.~ent

(default= TRUE) which specifies if CPU elapsed-time measurements are

to be taken. Typically, INITMEAS will be called from the beginning

of the program's driver function.

Example:

INITMEAS(TRUE)

The accumulated statistics may be printed out by calling runtime

function PRINTMEAS as an immediate statement while the state of the

measured computation is recovered.

Example:

:SP PROG
:RS
:DO PRINTMEAS()

39

APPENDIX E - Stop Messages

The following messages may be printed following the stop address

when a computation stops. The no~al meaning of the message is given.

ILLEGAL FAIL RETURN

attempt to fail return from function when not permitted in calling
statement

ILLEGAL VECTOR OPERATION

attempt to use an out-of-bounds index or use an invalid vector
descriptor

ILLEGAL FIELD OPERATION

attempt to use an out-of-bounds index or use an illegal descriptor

ILLEGAL FUNCTION CALL

attempt to make an illegal function call

ILLEGAL RING OPERATION

attempt to access a ring with an illegal vector descriptor or ring
selector

BAD OPCODE TRAP: n

attempt to execute an illegal instruction with octal opcode value n
(frequently an attempt to store into a constant)

BREAK

the program has encountered a breakpoint

STATIC BREAK

the program executed a BREAK statement or encountered an inconsistent
breakpoint

ARITHMETIC TRAP

an aritbmetic overflow occurred during an add, subtract, multiply,
or divide

PANIC

an unfielded attention panic occurred ..

DEBUGGER PANIC

a debugger panic occurred

DONE

the program terminated with a call on the HALT function

WINDOW TRAP

an attempt to access a word out-of-bounds of a segment occurred

STACK-OVERFLOW TRAP

the size of the program stack was exceeded

SUBPROCESS TRAP #n

a trap of type,n (octal) occurred in a subprocess created by the
debugged program

ST.ART-UP IMPOSSIBLE

ATTENTION TRAP

P-COUNTER TRAP

QUANTUM-OVERFLOW TRAP

INSTRUCTION-TRACE TRAP

FUNCTION-TRACE TRAP

4o

all these messages probably indicate a system error has occurred

	1.0 Introduction
	2.0 Program Organization
	3.0 Command Structure
	3.1 Addresses
	3.2 Ranges

	4.0 Commands
	4.1 Program Commands
	4.2 Text-Editing Commands
	4.3 Compilation Commands
	4.4 Program Execution Commands
	4.5 Breakpoint Commands
	4.6 State Commands
	4.7 Debugging Commands
	4.8 Miscellaneous Commands
	5.0 Attention Panics
	6.0 Debugger Panics

	Appendices
	A. Command Summary
	B. Runtime Debugging Functions
	C. CRMS Line Collector Requests
	D. SIMPLE Program Measurement
	E. Stop Messages

