PROPOSAL FOR FINAL CRMS APL INTERFACE

APL Subcommittee

David Redell

August 6, 19Tk

1. Function Definition Mode

As in APL\360, function definition mode allows the editing of one

function at a time, and is entered by typing:

a) The header of a new function

b) A 'V' followed by the name of an existing function
In case (a) a new function is being defined (i.e., appended to the end
of the program). If a function by that name already exists, it is an
error; but if a global variable already exists by that name, it will be
automatically erased and replaced by the new function. The syntax of
the function header is checked immediately. In case (b) an old function
is being modified, hence the function must exist or an error is signaled.

Once function definition mode is entered, system commands are not
recognized until it is left by typing a closing 'V'.

In function definition mode, the most frequent form of command is
the line-entry command which consiéts of one or more line numbers, an APL
statement, and a carriage return. The first line number is one suggested
by the system, but the user may type in one or more additional line
numbers. In all cases, the last of these line numbers is the one which
determines which line is being entered. If the APL statement in the
command is not empty, it becomes the contents of the indicated line (i.e.,
replaces the line if it existed, or is added to the function otherwise)
and the system suggests that the next line be entered. If the APL statement
is missing from the command, however, rather than entering nothing as the

contents of the line, the system suggests the indicated line number again.

Examples:

[5]1 €B
(5]

[5] 4 « oB @
[6]

[51 (8] €B
[8]

[5] [8] 4 « pB @
[9]

A line-entry command can also be used to modify a line, because the
system glways provides the original contents of the suggested line as
the line-collector's "template."
Examples: |
suppose that line T ;s

Z < (+/N) =+ oN

ole

then

(71 x % < (+/m)

changes it to

DN@

X < (+/0)

oo

plN

and

(1) @ <1201 @ z< (s s o0 @

defines line 20 to be a copy of line T

In addition, a line may be deleted by entering as its contents the single

 character "line-feed" (which is an illegal character in any other context).

Example:
[5] @ |
[6] .

deletes line 5

Finally, a line may be ipserted between two exisfing lines by giving
it an appropriate non-integral line number.
Example:
[5]1 [5.1] T<«TI+1 CB
[5.2]

inserts the new line between lines 5 and 6

The fractional part of a line number may only be 2 digits long. After
a non-integral line number is entered, the next suggested line number
will be one greater in its last non-zero digit (e.g., after 5.87 would come
5.88, 5.89, 5.9, 6). Line numbers are converted into consecutive integers'
when function definition mode is left.

The size of the mapping table matching logical line numbers to
physical line numbers during function definition mode limits the fraction
to two digits and the integral part to 600. (The table is a vector of

16-bit half-words.)

2. Workspaces

As in API\360, the user is allowed several workspaces holding
programs: and data. The workspace "CONTINUE" is always loaded when
starting up and always saved When 1eaving.+ The commands)LOAD CONTINUE
and)SAVE CONTINUE do nothing, unlike in APL\360. There may be)PLOAD
and)PSAVE commands which load and save only the functions but not the
data in a workspace. |

To provide a repeatable initial state for experiments and other
saved programs, the command)START is provided, which acts like)CLEAR
on the data in the workspace, but leaves the stored functions untouched.
In particular

)START <immediate statement>
will initialize the workspace and execute the immediate statement in a
fresh new process.

A workspace consists of a program (text, code, and debugger
segments), one data segment per process, and a "state" segment for
reconstructing internal tables in ARS. Thus, in CRMS APL, a workspace
can hold an entire experiment consisting of several processes, each with
its own stack and global variables. It also holds any mailboxes created
by the processes. Saving the workspace saves the entire statemAwhich is
helpful for later debugging, although in general, resuming execution
after reloading the workspace will not be possible since the connections
to terminals and files will have been saved. (In one sense, this is an
advantage, since it allows leisurely perusal of crashed experiments

without tying up terminals.)

*In fact, CONTINUE is itself the working copy in memory.

There are certain (infrequent) times when, for implementation reasons

(cluttered symbol table or global variable are overflow) a)START must
be done which would otherwise be unnécessary. This will be automatically

followed by a global recompilation when execution is next attempted (to

reclaim symbol table and/or global area space).

3. Execution

In general, starting and resuming execution (i.e., immediate state-
ment containing a branch, a return, a call on a user-defined function,
or)GO) cause recompilation of all functions which need it. If any
errors are detected during compilation, execution is not allowed. A
function needs recompilation:

a) if it has been modified

b) if it had any errors when last recompiled

e¢) if any global name has been erased (including a global

variable overriden by a newly defined function)
d) if any function has had its header modified
e) a)START has been done and recdvery of global variable and/or
symbol table space is needed

Note that in cases (c¢) and (d) only the body of each function need
be recompiled. Note also that the global symbol remains valid in all
cases except (e), which is the only time a total recompilation is needed.

If the stack is empty (following)START,)CLE4R, or '-'), an
immediate statement executes in the context of the global variables (if
any) which exist at that time. If an error breakpoint or etc. occurs,
a message is printed and the state may be examined.)GO resumes
execution exactly where it left off.

If the stack is not empty, an immediate statement executes in
the context of the appropriate function in the stack. Normally, this
is the top function but the)IN command may be used to selecf a different

one.+ (This is most useful for examining local variables of functions

TThis can be implemented by saving higher frames in an external segment
and putting them back before resuming execution.

in the stack.) If an error occurs during the immediate statement, it
is absorbed and the stack is left in the state it was in before the
immediate statement started (i.e., multi-level debugging is not
provided).

Whenever an error occurs, all process are stopped until execution
is resumed. This allows debugging and experimenter-process I/0 to
use the same terminal. It also allows the APL process data segments
to be swapped out during debugging, thus saving memory spacé.

While the program is stopped at an error (breakpoint, etc.),
inactive functions and the top function on the stack may be edited.
No function further down in the stack may be modified unless all
higher functions are removed. Furthermore, after the top function is
edited, the)GO command is no longer applicable; only a branch may

be used to resume execution jusf as in APL\360.

k. Commands

from:

Most APL\360 commands are retained in the same or slightly changed

JOFF
YCLEAR
)LOAD
)COPY
)PCOPY
)SAVE
)DROP
YWSID
)LIB
YENS
YVARS
)ERASE
YDIGITS
YWIDTH
)ST

(works like)CONTINUE in APL\360)
(unchanged)

(")

(works only for functions)

(” " " n)
(unchanged)

(")

(")

(")

(not alphabetized)

(" 1")

("

N SN SN
- -
- =
N Nt N N

