
PROPOSAL FOR FINAL CRMS APL INTERFACE

APL Subcommittee

David Redell

August 6, 1974

1. Function Definition Mode

As in APL\360, function definition mode allows the ~diting of one

function at a time, and is entered by typing:

a) The header of a new :function

b) A 'V' followed by the name of an existing function

In case (a) a new function is being defined (i.e., appended to the end

of the program). If a function by that name already exists, it is an

error; but if a global variable already exists by that name, it will be

automatically erased and replaced by the new :function. The syntax of

the function header is checked immediately. In case (b) an old function

is being modified, hence the function must exist or an error is signaled.

Once function definition mode is entered, system commands are not

recognized until it is left by typing a closing 'V'.

In function definition mode, the most frequent form of command is

the line-entry command which consists of one or more line numbers, an APL

statement, and a carriage return. The first line number is one suggested

by the system, but the user may type in one or more additional line

numbers. In all cases, the last of these line numbers is the one which

determines which line is being entered. If the APL statement in the

command is not empty, it becomes the contents of the indicated line (i.e.,

replaces the line if it existed, or is added to the :function otherwise)

and the system suggests that the next line be entered. If the APL statement

is missing from the command, however, rather than entering nothing as the

contents of the line, the system suggests the indicated line number again.

Examples:

[5] @

[5]

(5) A+ pB @

[6]

[5] [8] @

[8]

[5] [8] A + pB @

[9]

A line-entry command can also be used to modify a line, because the

system always provides the original contents of the suggested line as

the line-collector's "template."

Examples:

suppose that line 7 is

Z + (+IN) . pN

then

[7] X (t} + (+IN) . pN @

changes it to

X+ (+IN)-. pN

and

[7] @ < [20] (6 Z + (+IN) ..- pN @

defines line 20 to be a copy of line 7

In addition, a line may be deleted by entering as its contents the single

character "line-feed" (which is an illegal character in any other context).

Example:

[5]@ @
[6]

deletes line 5

Finally, a line may be inserted between two existing lines by giving

it an appropriate non-integral line number.

Example:

[5] [5.1] I+ I+ l @

[5.2]

inserts the new line between lines 5 and 6

The fractional part of a line number may only be 2 digits long. After

a non-integral line number is entered, the next suggested line number

will be one greater in its last non-zero digit (e.g., after 5.87 would come

5.88, 5.89, 5.9, 6). Line numbers are converted into consecutive integers

when function definition mode is left.

The size of the mapping table matching logical line numbers to

physical line numbers during function definition mode limits the fraction

to two digits and the integral part to 600. (The table is a vector of

16-bit half-words.)

2. Workspaces

As in APL\360, the user is allowed several workspaces holding

programs, and data. The workspace "CONTINUE" is always loaded when

starting up and always saved when leaving.t The commands)LOAD CONTINUE

and)SAVE CONTINUE do nothing, unlike in APL\360. There may be)PLOAD

and)PSAVE commands which load and save only the functions but not the

data in a workspace.

To provide a repeatable initial state for experiments and other

saved programs, the command)STA.RT is provided, which acts like)CLEAR

on the data in the workspace, but leaves the stored functions untouched.

In particular

)START <immediate statement>

will initialize the workspace and execute the immediate statement in a

fresh new process.

A workspace consists of a program (text, code, and debugger

segments), one data segment per process, and a "state" segment for

reconstructing internal tables in ARS. Thus, in CRMS APL, a workspace

can hold an entire experiment consisting of several processes, each with

its own stack and global variables. It also holds any mailboxes created

by the processes. Saving the workspace saves the entire statem which is

helpful for later debugging, although in general, resuming execution

after reloading the workspace will not be possible since the connections

to terminals and files will have been saved. (In one sense, this is an

advantage, since it allows leisurely perusal of crashed experiments

without tying up terminals.)

tin fact, CONTINUE is itself the working copy in memory.

There are certain (infrequent) times when, for implementation reasons

(cluttered symbol table or global variable are overflow) a)START must

be done which would otherwise be unnecessary. This will be automatically

followed by a global recompilation when execution is next attempted (to

reclaim symbol table and/or global area space).

3. Execution

In general, starting and resuming execution (i.e., immediate state­

ment containing a branch, a return, a call on a user-defined function,

or)GO) cause recompilation of all functions which need it. If any

errors are detected during compilation, execution is not allowed. A

function needs recompilation:

a) if it has been modified

b) if it had any errors when last recompiled

c) if any global name has been erased (including a global

variable overriden by a newly defined function)

d) if any function has had its header modified

e) a)START has been done and recovery of global variable and/or

symbol table space is needed

Note that in cases (c) and (d) only the body of each function need

be recompiled. Note also that the global symbol remains valid in all

cases except (e), which is the only time a total recompilation is needed,

If the stack is empty (following)START,)CLE.4R, or '+'), an

immediate statement executes in the context of the global variables (if

any) which exist at that time. If an error breakpoint or etc. occurs,

a message is printed and the state may be examined.)GO resumes

execution exactly where it left off.

If the stack is not empty, an immediate statement executes in

the context of the appropriate function in the stack. Normally, this

is the top function but the)IN command may be used to select a different

one.t (This is most useful for examining local variables of functions

tThis can be implemented by saving higher frames in an external segment
and putting them back before resuming execution.

in the stack.) If an error occurs during the immediate statement, it

is absorbed and the stack is left in the state it was in before the

immediate statement started (i.e., multi-level debugging is not

provided).

Whenever an error occurs, all process are stopped until execution

is resumed. This allows debugging and experimenter-process I/0 to

use the same terminal. It also allows the APL process data segments

to be swapped out during debugging, thus saving memory space.

While the program is stopped at an error (breakpoint, etc.),

inactive functions and the top function on the stack may be edited.

No function further down in the stack may be modified unless all

higher functions are removed. Furthermore, after the top function is

edited, the)GO command is no longer applicable; only a branch may

be used to resume execution just as in APL\360.

4. Commands

Most APL\360 commands are retained in the same or slightly changed

from:

)OFF (works like)CONTINUE in APL\360)

)CLEAR (unchanged)

)LOAD (II)

)COPY (works only for fUnctions)

)PCOPY (II II II II)

)SAVE (unchanged)

)DROP (II)

)WSID (II)

)LIB (II)

)FNS (not alphabetized)

)VARS (II II)

)ERASE (II)

)DIGITS (II)

)f.lIDTH (II)

)SI (II)

