
., ,,

WRITING BEHAVIORAL EXPERIMENTS IN CRMS APL:

PROGRAMMERS' MAJ.WAL

(PRELIMINARY VERSION)

Paul Gee

Wiley Greiner

Sheldon Linker

David Redell

July 15, 1974

Systems Group

Technical Docum.ent

Center for Research in Management Science

University of California

Berkeley

This work was done as part of the Systems Development effort under
National Science Foundation Grant GS-32138.

1

1. Introduction

APL\360 and most subsequent implementations of the APL language

have been oriented around a view of man-machine interaction in which

each person at his terminal is served by a single sequentially executing

program, over which he exercises complete control. While this view

certainly reflects accurately a majority of applications of interactive

computing, it fails rather badly to cope with several aspects of on-line

control of multi-subject behavioral experiments. In particular, it

assumes:

(a) That there is no direct interaction between the programs

serving different people.

(b) That there is a one-to-one correspondence between programs,

people, and terminals.

(c) That all program activity is initiated by a person at a

terminal, who may interrupt, modify, and otherwise interfere

with the program at will,

-h,,VV
At least ene new variants of APL\360

(,. aJ 4Pl.,, -,LJ/v

("APisv 11
(' attemptd to

eliminate assumption (a) above, but it has left assumptions (b) and (c)

in force. The system described below is a much wider departure from

APL\360, which attempts to provide a more suitable environment for

experiment control by eliminating all three of the unsuitable assumptions

mentioned above.

2

2. Processes

Following standard operating-system terminology, we refer to "a

program in execution" as a process. It is intended that an experiment

be written as a collection of several cooperating processes, started

at appropriate (perhaps different) places in the same APL program.

Logically, these processes are best thought of as separate, disjoint

copies of the program. {The fact that certain parts of the program

are shared in order to conserve memory is invisible) ia partic\kl.ar,

f:nere is no logical sharing of any variables, local or global, between

separate processes.$

It would be possible, of course, to avoid the idea of processes

by forcing a single experiment program to explicitly deal with multiple

subjects at terminals, experimenter intervention, data,logging, and

so on. Experience with other systems has shown, however, that such

intrinsically parallel tasks can be handled more conveniently by

several "copies" of a program, running in parallel (i.e., several

processes).

In an experimental situation, the people interacting with terminals

(or other interface equipment) are not "users" in the normal sense and

must be given neither privileges nor responsibilities normally

associated with "users". In particular, they must be neither responsible

for the initiation of program execution (process creation) nor capable

of termination of program execution (process destruction). Moreover,

some processes within an experiment may not be associated with any terminal

at all.

For the above reasons, the system allows processes to be created

and destroyed by other processes. Except for the initial process (which

3

is created by a command from the controlling terminal--see USERS' GUIDE))

all processes in an experiment are created in this way.

- 3. The Two Levels of Library Functions

The library functions available to users for constructing multi­

process experiments are divided into two groups:

(a) "High-level" functions which allow easy construction of

standard experiment configurations.

(b) "Low-level" functions which manipulate the basic building

blocks of experiments in more flexible but rather more

complicated ways.

4

The low-level functions are used in a stylized fashion by the high-level

functions to construct the most frequently used types of configurations.

Section 4 describes the high-level functions in sufficient detail

for the construction of standard configurations. Section 5 describes

the basic building blocks and the low-level functions for manipulating

them. This information allows the programmer to completely ignore the

high-level functions and construct any unusual configuration desired.

Between these two extremes lies the approach of constructing a standard

configuration using the high-level functions, and then slightly rearranging

things using a few calls on low-level functions. In general, this is much

less work than starting "from scratch", even though it requires some

knowledge of how the high-level functions use the basic building blocks.

This information is contained in Section 6.

Sections l through 4 and the appendices are sufficient for writing

most experiments; hence Sections 5 and 6 may be skipped on a first reading.

..
if '" .. vf ' \)s ti.,., • "-:\,,Jt ' 'c' ("fs!t ~r--\ 6(-) L L \

; • ~u\2).:Slic\~ ~~~ ~ "" 11
1 \' J. "10 <..:, I!, _ c -\J\ ~

/{ >vB.5€'£-rr..~ ~~ C' N~ fr,c e.,i., ; ~ c,ru-CJ)
4. High-Level Functions for standard Configurations

_, T ..,,,

The standard experiment configuration is shown in Figure 1. Here,
~t-l_,+e ✓

the initial process is the ~men~•1 's:i?rocess which creates and

supervises as many subject processes as desired. The bi-directional

communication channels, shown as double-ended arrows, allow the processes

to coI!IIrlunicate with each other and with their terminals. A terminal

connected to a subject process is called a subject terminal. The terminal
;, J ') Iv.,,.,,.. n1. ~,.,,

connected to the expErlmentex 1 ::1 proc~ss is called the OX1iOf'ittterrte1 '-s
-/-1'/ 6e.. £.vii p.,,u.,I I,

terminal, and is no~n g~ th~ii as the controlling terminal

from which the experiment was started. The data log is a file in which

the experimenter's process may log any desired data as the experiment

progresses.
/v

by calling the "create The experillienter I e- J?:rRcess ere.ates subjrects
. " . t o~{I JSJ-Euf:_tfFl/'1t.f:,U/:.

subJects function : \ fd_ £/) ..----'

~OCR_SUBJECTStoA;o1:J FD

This creates one or more subject processes attached to the terminal(s) o,r/hr f'l;6,fs
r~co 7~£P

specified by J. The number of subjects created is Pfl)7fl, If~ is omitted,
£P-_£/)

the experimenter israsked to enter
1

the value 1 of'v from his ~ermi~;} The
s_.t:1J_v1's- --r- l"t£1-,,,, ~f-=-t~Jjo/-T,N.. /le;---- .,-w/h!J1 1/J 11.,.~, 5_

subject processes start execution in the function whose "function-descriptor"
Ip f'~
is'FD. (The function-descriptor of\F can be obtained using monadic

$--i.e., $F .) This function must be monadic, and receives as its argument
"'3?'~"4

the value of A . (Thus, th~ new process starts r±ing as if it qad~
ro[.z] 41td FO[s], /f _pie~ ~3/' <' ly .,1/ /11.,r;K,,r,vm Qd""/ 5 u,,,:;..g S !',-

executed the statement FA .) If A is omitted 10 is passed. /le.,, l'rg~ss-.,,
1/... ~s ft,,,✓ /l,,.,,<-= 7 ----l

_I,bere is ne Fule against CJ.H.4~ ['f;R_SUBJECTS more than once, hence

the subject processes may be creat£1 individually, in several batches, or
6¥ I; e .;r/ •,. m 1, U/1, I oc.e,,yL

all at once. ::A:t:=:-1 l. ·U_mQ:;;, the matrix 05UBJECTS I contains inf_prmation
Sv/J ',._ r ,1'&1."?fJ#J.,-. 1: ,,,/.. ,, .- ,. J, -v/ 4~ O~vfi.TE;::75__

on all existing subject processes.4 In particular, the correspondence

t Note CRMS APL argument notation: o means "optional", p means "by reference".

\
~el"imeilter

Process

Standard Configuration

Figure 1

6

•

7

between subject processes and subject terminals is kept track of by making

the value of IBUBJECTS [I;2] be the terminal number of the terminal

attached to the Ith subject process. (There is other information in

0,glJBJECTS but this can be ignored for standard configurations. It is

discus~ed in Section 6.)
/1'1 f .,,..

The expCI imente:r I s process creates the data log using the "create log"

function:

V OCR_LOG[oNAt;.lE]

NAf;fE is the filename of the logging file. If NAP.fE is omitted, its

value is requested from the experimenter's terminal. If the named file

already exists, it's old contents will be overwritten.

Once the experiment is set up and running, the various processes

must be able to communicate data over the appropriate channels. The

interface to the terminal channels is simply the familiar input/output

convention of APL\360 with certain local modifications. (For example,
~ /' Vnt.f! r, L - ,:;~ ?-J/-../ I fl/~

~ad=iilput is ,.,•<?fkened eonsid:e1:abl.9 b6 prevents a subject at a terminal
c/,roe I-/ t;'$'s,,,7111"y '1C'IV ✓,r/Y"1- ~ VA"r ,.;lJ.i.

from in:tiopfa.sing 1,d'tll tne 1rnbaect p;recces eontJ?o±ling .>t:bat te~nal, as

discussed in Section 1.) Input/output is discussed in more detail in

Sections 5.5 and 5.6.
/'1 f,'

The channels between the~erimeH~er aDd the subjects are used

by calling four special functions. Two of these are for the subject

processes:

-"! ~ u VO (i-/1/EJ_ ;vl

.Jr-M , []GU- v f1 (- O (;£Ti

Calling []GIVEi passes message M to the experimenter's process. Calling

[};ET~ returns the next message sent to this subject process by the

experimenter's process. The other two functions are for the experimenter's

8

process:

~

v Mc fJGETBROM pI t ft~ D .;-1:r !J f" * I
Calling Q'.;IVEtt sends message M to the~ subject procesJ. Calling

Q'.;ET~ returns the next message sent by-M,8< Irt'k subject procesf.I If

I is a vector, the message may come from any of the specified subjects.

When Q'.;ETJm(J..!1, returns, I is set to the·number of the subject process

which is sent M.

The channel to the data log is accessed by the "log" function:

V [][,OGX

Calling lli,OG writes the value of X on the data log.

There are two useful variations on the standard configuration which

are also supported by the high-level functions. The first is the simple

one-terminal experiment, as shown in Figure 2. The programmer here writes

the program for the subject process, but need not write a program for

the experimenter's process. Instead, a standard experimenter program

named OSINGLE may be started, which will start the subject program in

its first function and turn over the experimenter's terminal to it. If

several such one-terminal experiments are desired, as !~ Figur,..._ 3A--starting/1 ~
[JJ.,f///,) {4ll- eiC r~11y;n,. f1,,,- /'/irl-t,r _I,1 ~/1"'..,.f .Z:A./c,./ ...1'f_ /1r,e

the experimenter program 9Rs'FTffl:E will request that the terminal numbers

be entered at the experimenter's terminal, and then will start a subject

process for each terminal specified. Of course, the subject programs

must refrain from using the Q'.;IVEf and Q'.;ET! functions, since there is

no real experimenter process for them to talk to.

The second variation is an elaboration on the standard configuration

which allows the substitution of "robot" subjects for any number of the

Single-terminal Experiment

Figure 2

• • •

Parallel Single-terminal Experiments

Figure 3

9

10

terminals interfacing with real human subjects. This is done in two stages.

First, the robots are created by the experimenter's process using_the

"create robots" function:
A.,_t!L <.. h

"v tlcR_ROBOTS[oA;oN] FD

This creates N robot processes. If N is omitted, the value is requested

a,t,,.,..the experimente 's ~~nal. The use f FD and A ~s exactly as in
~- J_ n_ (_ I', (,A J t!L t,I p ~ J\/) 1--IJt_ - ,• ,.,- rp ~ f6t £ /) ~#, lc,s O f/0 f !) , ·-:-f.:
D:.:R_SUBJECTS . Subsequently, when the subjects are created, any +, 6wJ: ~,~-;,""!

/ (' 'Cd Q Cll•Jr-rc ftr 1.fl_, j

~ which is .ao~S:'t±ve (i.e., -J) will be interpreted as a,re~u 1ft to
e,c,,rtsfl- (r,.6# f C /

connect the co1£cspo11J:ing subject process to the ..;:l;.s.. robot /instead of

a real subject terminal. Subsequently, any output from the subject

process will arrive as input for the robot, and vice-versa .. Thus, a

configuration such as shown in Figure 4 can be constructed with only

minimal modification of the experimenter's process, and no change whatso­

ever to the subject processes.

Usually, it will not be necessary for the robot processes to

communicate directly with the experimenter process. If this does become

necessary, however, it can be done using the □GIVEf and []GETl functions

in the robot programs, and the []GIVE'ftP and []GETFR€JU functions in the

experimenter program. The □GIVETO and □GETFROM functions interpret

a negative argument (-J) as indicating the Jth robot process.

At any time, a process may wait for

"wait" function:

V OMtI'.f M t)(- QfJ L 5
Calling this function delays the process One may

also wish to request input from a subject terminal with the understanding

that if no input is received within a specified time limit, the request

should time-out. To this end, each of the input functions has an optional

• •

Experiment with Robots

Figure 4

11

argument which is a time limit in milliseconds:

V R+ 0INNUi•i[oTL]

V R+ ~[oTL]

V R+ OINMIX[oTL]

If the time limit expires, \0 is returned.

explanation of input functions.)

-- --

(\

(See Appendix\Jr an

12

)

13

- 5. Low-Level Functions and Basic Building Blocks

The standard configurations described in section 4 are implemented

utilizing a set of primitive objects which can be connected together in

a variety of ways. The primitive objects are:

(a) Processes

(b) Mailboxes

(c) Terminals

(d) Files

(e) Alarm clocks

Each of these objects and the functions for manipulating them are

discussed below.

5.1 Processes

The notion of a process has already been discussed in Section 2,

Processes are created by calling the "create process" function:

'v ID + A []CR_PROC[oMAX;oSTATE] FD

The new process starts executing in the function whose function-descriptor
j() fD

is ,pf)- , which must be monadic and receives as its argument the value of

A . MAX is the maximum number of mailboxes the new process may specify

in any single call on ORECEIVE (see below about ORECEIVE). If !'4AX

is omitted, the default is 5. STAT~ contains the initial values of certain

global state variables in the new process whose significance will be

explained later.

□WIDTH +- STATE[1] (default = 132)

□DIGITS +- STATE[2] (default = 6)

□PROC +- STATE[3] (no default)

□IO_BOXES +- STATE[4 5] (no default)

OIPC _BOXES +- STATE[6 7 J (no default)

□ALAR/.1 +- STATE[8] (no default)

ORA.ND -<- STATE[9] (default= 93117)

The value of ID returned by □CR_PROC is the "process-ID" of the new

process.

Processes are destroyed using the "destroy process" function:

V □IJE_PROC ID

The process identified by ID is destroyed.

5. 2. Mailboxes

14

For a collection of processes to implement an experiment, at least

three kinds of communications must be possible:

(a) Communication among processes.

(b) Communication between (at least some of) the processes and the

terminals which interface with the subjects.

(c) Communication between some process(es) and at least one file

for logging of experimental data as it is collected.

All three of these functions are accomplished through objects called

mailboxes. A mailbox is simply a first-in-first-out queue of APL data

items (i.e., scalars, vectors, matrices--anything which can be stored

in an APL variable). The following description treats case (a) in which

items are being communicated among processes. Later sections describe

. the use of mailboxes in cases (b) and (c), involving terminals and files.

Mailboxes are created using the "create box" function:

l5
V ID + □CR_BOX[oN] MAX

If N is absent, this function creates a new mai"lbox d t an re urns the integer

mailbox identifier ID to be used later in referring to the new mailbox.

many as l1AX processes may request messages from the mailbox at any given

time. If N is given, then N mailboxes are created and ID is a vector of

As

N mailbox identifiers. Mailboxes are destroyed using the "destroy box" function:

V □DE_BOX ID

This function destroys the mailbox identified by ID .

5,3. Sending Messages

A message may be sent to a mailbox using the "send" function:

V BOX OSEND M

If a receiver is already waiting for the message, it is transferred

immediately. Otherwise, the message waits in the mailbox until it is

requested. In either case, the sender continues execution immediately.

If BOX is a multi-element vector, a copy of message Mis sent to all

mailboxes specified. •

Using the "deliver" function:

V BOX □DELIVER M

is identical, except that the delivering process is delayed until reception

of the message(s) by the receiver(s) has occurred.

5,4. Receiving Messages

A process can obtain a message from a mailbox using the "receive"

function:

V M + ORECEIVE pBOX

When □RECEIVE is called, BOX identifies the mailbox from which the

message Mis to be received. If BOX is a vector of different mailbox

identifiers, the message may come from any of the specified boxes. When

16

ORECEIVE returns, BOX is set to the identifier of the mailbox from

which the message was received. (Note that the length of BOX may not

exceed the value MAX specified when the process was created.)

5,5. Terminal Input/Output

A terminal can be attached to a pair of new mailboxes using the

"boxes for terminal" function:

V BOXPAIR + []BOXES _TERM TER:1

which returns a 2-element vector (BOXPAIR) specifying the two new boxes:

an input mailbox and an output mailbox, in that order. TERl1 is the

terminal number.

The exact format of terminal input/outp 1.1t is discussed in the next

section. Generally speaking, on output, characters are printed literally,

and numeric values are always converted to their character-string

equivalents. The same is normally true on input, but the conversion of

numeric substrings in the input line may be controlled using the "set

convert" function:

V INBOX 05ETCONV CFLAG

This function turns conversion off (on) if CFLAG = 0 (1) .

A terminal may be detached from a pair of mailboxes using the "detach"

function:

'v [JDETACH BOXPAIR

5,6. Terminal Input/Output Formatting

In an experimental situation, a high degree of control over the level

of interpretation of input is desirable. Therefore, besides the usual Quad

and Quotequad input forms, a third foYID. of input interpretation is provided.

Generally, it interprets the input as a vector with characters distributed

17

·to elements in two ways. Each longest initial substring of characters

that can be interpreted as a number forms one numerical element, and all

other characters individually form character elements.

Examples:

3-2 is interpreted as the two-element vector 3, -2

3-2 is interpreted as the three-element vector 3, -, 2

1.2 A-24.6E-1EZ is interpreted as the seven-element vector

1.2, blank, blank, A, -2.46, E, Z

All numeric output conversions are done using "free format".

Conversion specifications need not be given by the programmer; they are

chosen for him according to the output values each time. If the programmer

wants his output to be of a specific form, he may use the "specified­

format" conversion discussed in Section 5.9.

Output is converted as follows:

(a) SCALAR - A scalar character is printed literally; a scalar

number is printed after being converted into its-character

string equivalent in 'integer', 'floating-point', or

'exponential' format. The format is automatically chosen

depending upon the number's magnitude and whether or not it

is an integer.

(b) VECTOR - Each element of a vector is converted as if it were

a scalar, and the entire vector is printed with the insertion

~
of_..:l;M6blank character)il between the adjacent numerical elements.

(c) MATRIX - All characters in the matrix are printed literally;

for the numerical elements, a single minimum width format is

first chosen such that all the numbers in the matrix can be

represented with at least one preceding blank character. Then

all numbers of the matrix are converted using that format.

Each row of the matrix is started on a new line. Thus, if

18

each column of the matrix is of the same type (either character

or number), the columns of the output will be aligned.

(d) RANK-N ARRAY - Rank-n arrays are displayed as sets of matrices

using additional linefeeds to indicate the shape of the higher

ranks.

(e) EMPTY ARRAY The empty array is signified by a carriage-return

followed by a line feed.

5,7. File Input/Output

A process may create and destroy files using the monadic functions:

'v fJCR_FILE NAME

'v [JIJE_FILE NAME

where NAtfE is a character-vector containing the symbolic name of the

file.

A file is attached to a new pair of mailboxes by using the "boxes

for file" function:

'v BOXPAIR + [JJOXES_FILE NAME

where a 2-element vector (BOXPAIR) is returned (as in BOXES_TER!-1) .

Sending messages to the output mailbox causes data to be written on the

end of the file. Receiving messages from the input mailbox causes data

to be read sequentially (starting from the beginning of the file when

it is first attached). At any time, input may be restarted from the

beginning of the file using the "rewind file" function:

'v OR'vl_FILE BOXPAIR

As in the case of terminals, a file may be detached from a pair of mail-

19

boxes using the "detach" function:

'ii QJJETACH BOXPAIR

' The existence of a file named NA/£ may be determined using the

"exists :file" function:
xs

VR + ~ FILE NAME -
where 1 is returned i:f the file exists, and O otherwise.

5.8. Alarm Clocks

An alarm clock can be attached to a mailbox, which will cause a

single message to appear in the mailbox when the alarm "rings". This is

useful in two situations:

{a) A process may wish to simply "go to sleep" for some predetermined

(b)

length of time (as in the □YIAIT function of Section 4).

A process may wish to receive a message while insuring that

will not wait forever if the message does not arrive (as in

the time-limit option on the terminal input functions, also

described in Section 4).

it

In both cases, the process should call ORECEIVE, specifying the alarm

mailbox and, in case (b), the other mailbox(es) on which the time-limited

message is expected.

Each process is automatically given a private mailbox preattached to

an alarm clock. The mailbox-identifier is stored in the global variable

[]ALARM in the process. New alarm mailboxes may be created using the

"box for alarm" function: 'A Lfllll

Note that any attempt to send or deliver messages to an alarm mailbox is

illegal.

,

I •

20

An alarm clock is set using the "set alarm clock" function:

V OS'ET_ALARM[oA.LARM] TIME
ur I"'- t.

This causes the alarm clock to "ring" in TIME ~seconds. If

ALARM is omitted, []ALARM is used. Tk ~hi\ (.f., .. /c r{-p- 'r I/,,,. ;(f,." ~-t~ '/,'ye_

c .1-~.,, - fl. «¼o 5""; f,,{ , , , ;.. -.rk ",:ror -/<-f '' ;.., -:!£,' ~ se....,rwL.
An alarm ock may be reset at any time by calling the "reset alarm /, ,.

S+ ;, "h ~ r r ., --fp :n,;c. f.-o D'> E1- -{lfi-f,1 1 f,, -tk ~),C , /I
function: a ,,,v vv ,' /2.,.,, t ,; D /(,£<.fl j//r or O ~£sF 1-_ A-LAR/"1 - 1 f . .;,,_.

,,, {-.,/ - I 'n ,,e w~Y"-~

V ~EMA.IN ~- ORES ET _ALARM[oALARf.1]

If ALARM is ommitted, []ALARM is used. This empties the alarm mailbox

a..n.d if the alarm was previously set but has not yet "rung", the ring is

cancelled. The time remaining until the cancelled ring is returned to

RE~JAIN. (If no ring was pending, zero is returned.) Using these functions, a

process can wait for some message M via mailbox B by executing:

OSET_ALARM LIMIT

M + ORECEIVE BOX + B ,04.LA.Rl1

R + ORESET_ALARM

WAIT + LIMIT :.. R

In this example, if M never arrives, the process will wa__~eup after

LIMIT ~econds with WAIT set equal to LIMIT , and BOX equal to

[]ALA.RU. On the other hand, if M arrives before LIMIT ~seconds

have elapsed, WAIT will contain the length of time the process waited

for M , and BOX will be equal to B .

5.9. Specified-Format Conversion

Any data object in APL may be converted to its external form by the

function:

V RESULT + □CONVERT [oFORJ,,JAT] OBJ

where OBJ is the data object, FORt1AT is a matrix of pairs of numbers,

21

and RESULT is the character matrix of OBJ in external form. Each

pair of numbers in FORf.fAT has the meaning total field width and fraction

field width, respectively. Each pair of numbers is used to control the

conversion of a column of the array. The last pair controls all successive

columns.

All aspects of specified-format conversion are the same as in free­

format (see Section 7) i.f the optional argument , FORMAT , is· not given.

If FORMAT is given, then it is used to specify the nmneric conversion

formats. The total field width may be chosen by the user or, if set to

zero, is chosen by the function such that at least one space will be left

between adjacent numbers. The format to be used is determined by the

fraction field width. If it is zero, integer format is used. It it is

positive, then it indicates the desired number of digits after the decimal

point. If it is negative, its absolute value minus one is the desired

number of digits after the decimal point, and exponential format is used.

• . fz,.,P . ul l O t. Specified-format conversion has-:-eu partic ar app ica ions. The

first is to allow better control of terminal output formatting. Terminal

output of any form ca..D be composed by first converting the output data

using QCONVERT and then sending the resulting character matrix to the

output terminal.

The second application involves writing data files which are to be

used in other computer systems. When APL data objects are written on

data files, the internal representation of that object is put on the file.

However, this is inadequate if the file contains numbers and the file is

used by another computer system because different computer systems may

use different internal representation for its numbers. Thus, numbers

must first be converted to an external from (character matrix equivalent)

using Qf:ONVERT before they are written onto the file.

22

6. Conventions Used by High-Level Functions

The conventions used in constructing the standard experiment

configurations are relatively straightforward. Each of the bi-directional

communication channels is a pair of mailboxes which are attached to a

terminal or file in the appropriate cases. The mailbox identifiers of

the various mailboxes are stored in certain standard global variables in

the memory of the various processes. Every process has a scalar []PROC

containing its own process numbe_) and a two-element vector named

OIO_BOXES , specifying an input and an output mailbox which are used

whenever the standard APL input/output operations are executed. Similarly,

the subject processes and robot processes each have a two-element vector

called OIPC_BOX~S , specifying the mailboxes used by []GET.fand □GIV~,

in that order. (In the experimenter's process, OIPC_BOXES is undefined.)

The overall configuration of the experiment is recorded in the matrices

OSUBJECTS and □ROBOTS in the experimenter's process. These are

formatted as follows:
y UsvB3fcT~{: (';

element data from~ 8Cl'r5j~~I:; :e:i:oeess

OSUBJECTS [I;1] = ~ce&s-ide. tJ,...f-:t,er-= {tyvK fvp/~ fl} l},,,,.I~
OSUBJECTS [I;2 J = :t;i;n;:mh:iiJ ~9P fo Tobol) re-I~ t- d~ r .. ~ ~) _rq_II) [. te~,.._, A-vni. ~ /V

OSUBJECTS [I;3 4] = OIO_BOXES

0SUBJECTS [I;5 6] = OIPC_BOXES

'CEUBJECTS [I; 7]

element

□ROBOTS [J;1]

□ROBOTS [J; 2 3]

□ROBOTS [J;4 5]

□ROBOTS [J; 6]

= □ALARN
L

data from -cfot"ft 1,glJgt !JPOCCSS

~:r;::Qcess-id nt--i ""'er:::

= OIO_BOXES

= OIPC_BOXES

= 04LARi1

T (r' A')-1- T[r,J,-1-:£() ,/4~ 1?

23

Also defined after □CR_LOG has been called, is the two-element vector

□LOG_BOXES specifying the pair of mailboxes attached to the dat~-logging

file.

Note that in an experiment using robots, if the~
C (C:. ,: Iv,}

subject process [°6'V. L.,,1

is connected to I,!@ JSl1 robot process 1, that the terminal
re-r'A'

j. (i.e., OS'UBJEC1S[I;2]) is .j/- , and that OIO_BOXES

number of B&SJecL

in subject I is just

$ OIO_BOXES in robot C.s,., thus setting up the connection between them.

Using the information in this section, the programmer can create

modified versions of the standard configurations of Section 4. For example,

to set up the situation in Figure 5, one can create a standard two-subject

experiment and then establish the direct subject-to-subject channel by

having the experimenter's process create two new mailboxes (identified

by say J and K) and pass the pairs J,K and K,J to the two subjects,

who can then communicate directly using OS'END and □RECEIVE

fr')

Subject
Process

1

0

Experimenter's
Process

Subject
Process

2

Modified Standard Configuration

Figure 5

24

..,

APP~N})IX 1

G- ~IC5 c,1.1~~ >"vp p,•nl.{_ 'y-
~ not • CRMS APL

~>-1\c
OPERA.TOO

ill

NAME

Matrix division

-Protected punctisu [,...t-J {.;,;,,et(~

-.d0:ir----~RG~t~a~na: c11mensi&IT

D Quad 0 :wtrnt (A ..;t--

. G-R!+PH I(
~

25

APPENDIX 2

Overstrike Transliterations

Currently, overstrike characters are not implemented. Operators with

overstrike-characte·r name are renamed as follows:

SYMBOL REPLACEMENT

1Y NAND

NOR

UPGRADE

DOWNGRADE

LN

SYMBOL NAME

Nand

Nor

Up grade

Down grade

Logarithm

26

EXCLAMATION Factorial and Combination

TRA...WSPOSE

ROTATE
Rtn,47~

A ()

[!] I-

□QUOTE

\

/

Transpose

Quote-quad

/
J

27

APPENDIX 3

Additional primitive functions in CRMS APL

1) V R + J. A

J. returns the type of A (or elements of A).

1 if the element is numeric, 0 if character

2) 'i/ R + T A

T converts between character and its internal ASCII code equivalent.

3) V R + E A

E returns 1 if A is defined, 0 otherwise

4) 'i/ ORANDSET A (;,,
,

Set "random seed" to A

5) VA+ OINNUM [~8A-lJ_ tf//CITLJ

OINNUM returns vector of umb~rs from the_ te¥Jlinal. ,J, TL
,£/' e,41)_ JI'/ e-': :s-) s I ,-,, ire v,11,J.,l wft_4y.., rw.{ n I
limit of wait. lO is returned if time limit is exceeded.

6) VA+ DINN.IX [oTL]

OINMIX returns a vector of numbers and characters from the terminal.

TL is the time limit.

7) 'ii A + 1-[oTL]

(same as [!] returns a vector of characters from the terminal.

TL is the time limit.

The values are:

A[1] = year A[S] = minute

A[2] = month A[6] = second

A[3] = day A[7] = millisecond

A[4] = hour A[8] = microsecond

	1. Introduction
	2. Processes
	3. The two Levels of Library Functions
	4. High-Level Functions for Standard Configurations
	5. Low-Level Functions and Basic Building Blocks
	6. Conventions Used by High-Level Functions
	Appendices
	1. Operators not in CRMS APL
	2. Overstrike Transliterations
	3. Additional primitive functions in CRMS APL

