WRITING BEHAVIORAL EXPERIMENTS IN CRMS APL:

PROGRAMMERS' MANUAL
(PRELIMINARY VERSION)

Paul Gee
Wiley Greiner
Sheldon Linker
David Redell

July 15, 197k

Systems Group
Technical Document
Center for Research in Management Science
University of California

Berkeley

This work was done as part of the Systems Development effort under
“ National Science Foundation Grant GS-32138.

1. Intrcduction

APIN\360 and most subsequent implementations of the APL language
have been oriented around a view of man-machine interaction in which
each person at his terminal is served by a single sequentially executing
program, over which he exercises complete control. While this view
certainly reflects accurately a majority of applications of interactive
computing, it fails rather badly to cope with several aspects éf on-line
control of multi-éubject behavioral experiments. In particular, it
assumes:

(a) That there is no direct interaction between the programs

serving different people.

(b) That there is a one-to-one correspondence between programs,
people, and terminals.

(c) That all program activity is initiated by a person at a
terminal, who may interrupt, modify, and otherwise interfere
with the program at will.

At least one new variant of APL\360 ("APL SV") attempts to
eliminste assumption (a) sbove, but it has left assumptions {b) and (e)
in force. The system described below is a much wider departure from
APIN\360, which attempts to provide a more suitable environment for
experiient control by eliminating a1l three of the unsuitable assumptions

mentioned above.

2. Processes

Following standard operating-system terminology, we refer to "a
program in execution" as a process. It is intended that an experiment
be written as a collection of several cooperating processes, started
at appropriate (perhaps different) places in the same APL program.
Logically, these processes are best thought of as separate, disjoint
copies of the program. (The fact that certain parts of the program
are shared in order to conserve memory is invisible; in particular,
there is no logical sharing of any variables, local or global, between
separate processes.)

It would be possible, of course, to avoid the idea of processeé
by forcing a single experiment program to explicitly deal with multiple
subjects at terminals, experimenter intervention, data:logging, and
so on., Experience with other systems has shown, however, that such
intrinsically parallel tasks can be handled more conveniently by
several "copies" of a program, running in parallel (i.e., several
processes).

In an experimental situation, the people interacting with terminals
(or other interface equipment) are not "users" in the normal sense and
must be given neither privileges nor responsibilities normally
associated with "users", In particular, they must be neither responsible
for the initiation of program execution (process creation) nor capable
of termination of program execution (process destruction). Moreover,
some processes within an experiment may not be associated with any terminal
at all.

For the above reasons, the system allows processes to be created

and destroyed by other processes. Except for the initial process (which

is created by a command from the controlling terminal--see USERS' GUIDE)

all processes in an experiment are created in this way.

3. The Two Levels of Library Functions

The library functions available to users for constructing multi-
process experiments are divided into two groups:
(2) "High-level" functions which allow easy construction of
standard experiment configurations.
(b) "Low-level" functions which manipulate the basic building
blocks of experiments in more flexible but rather more
complicated ways.
The low-level functions are used in a stylized fashion by the high-level
fupctions to construct the most frequently used types of configurations;
Section 4 describes the high-level funcfions in sufficient detail
for the construction of standard configurations. Section 5 describes
the basic building blocks and the low-level functions for manipulating
them. This information allows the proérammer to completely ignore the
high~level functions and construct any unusual configuration desired.
Between these two extremes lies the approach of constructing a standard
configuration using the high-level functions, and then slightly rearranging
things using a few calls on low-level functions. In general, this is much

less work than starting "from scratch'", even though it requires some

H
knowledge of how the high-level functions use the basic building blocks.
This information is contained in Section 6.

Sections 1 through 4 and the apvendices are sufficient for writing

most experiments; hence Sections 5 and 6 may be skipped on a first reading.

4, High-Level Functions for Standard Configurations

The standard experiment configuration is shown in Figure 1. Here,

the initial process is the experimenter's process which creates and

supervises as many subject processes as desired. The bi-directional

communication channels, shown as double-ended arrows, allow the processes
to communicate with each other and with their terminals. A terminal

connected to a subject process is called a subject terminal. The terminal

connected to the experimenter's process is called the experimenter's

terminal, and is not, in general, the same as the controlling terminal

from which the experiment was started. The data log is a file in which
the experimenter's process may log any desired data as the experiment
progresses.

The experimenter's process creates subjects by calling the "create
subjects" function+

v DCR;SUBJECTS[QA;OT] FD

This creates one or more subject processes attached to the terminal(s)
specified by I . The number of subjects created is pT7 . If T is omitted,
the experimenter 1s asked to enter the value of T from his terminal. The
subject processes start execution in the function whose "function-descriptor"
is FD . (The function-descriptor of F can be obtained using monadic
$--i.e., $F .) This function must be monadic, and receives as its argument
the value of 4 . (Thus, the new process starts running as if it had
executed the statement F A .) If A is omitted 10 is passed.

There is no rule against calling [CR_SUBJECIS more than once, hence
the subject processes may be created individually, in several batches, or
all at once. At all times, the matrix OSUBJECTS contains information

on all existing subject processes. In particular, the correspondence

Note CRMS APL argument notation: o0 means "optional", p means "byreference'.

Experimenter
Process

Subject
Process
2

Subject
Process
n

Subject
Process
1

ya
O O " O

Standard Configuration

Figure 1

between subject processes and subject terminals is kept track of by making
the value of [SUBJECTS [I;2] be the terminal number of the terminal
attached to the Ith subject process. (There is other information in
OSUBJECTS , but this can be ignored for standard configurations. It is
discussed in Section 6.)
The experimenter's process creates the data log using the "create log"
function: |
vV OCR_LOGLONAME]
NAME is the filename of the logging file. If NAME is omitted, its
value is requested from the experimenter's terminal. If the named file
already exists, it's o0ld contents will be overwritten.
Once the experiment is set up and running, the various processes
must be able to communicate data over the appropriate channels., The
interface to the terminal channels is simply the familiar input/output
convention of APL\360 with certain local modifications. (For example,
quad-input is weakened considerably to prevent a subject at a terminal
from interfacing with the subject process controlling that terminal, as
discussed in Secticn 1.) Input/output is discussed in more detail in
Sections 5.5 and 5.6.
The channels between the experimenter and the subjects are used
by calling four special functions. Two of these are for the subject
processes:
vV OGIVE M
v M <« [0GET
Calling [GIVE passes message M +to the experimenter's process. Calling
LGET returns the next message sent to this subject process by the

experimenter's process. The other two functions are for the experimenter's

process:
v M O0GIVETO I
V M <« [OGETFRO:! oI
Calling UGIVETO sends message [to the Ith subject process. Calling
[GETFROM returns the next message sent by the Ith subject process. If
I is a vector, the message may come from any of the specified subjects.
When [GETFROM returns, I is set to the number of the subject brocess
which is sent M .
The channel to the data log is accessed by the "log" function:
v 0o x
Calling [LOG writes the value of X on the data log.

There are two useful variations on the standard configuration which
are also supported by the high-level functions. The first is the simple
one-terminal experiment, as shown in Figure 2. The programmer here writes
the program for the subject process, but need not write a program for
the experimenter's process. Instead, a standard experimenter program
named [SINGLE may be started, which will start the subject program in
its first function and turn over the experimenter's terminal to it. If
several such one-terminal experiments are desired, @s in Figure 3, starting
the experimenter program [MULTIPLE will request that the terminal numbers
be entered at the experimenter's terminal, and then will start a subject
process for each terminal specified. Of course, the subject programs
must refrain from using the DGIVE and [GET functions, since there is
no real experimenter process for them to talk to.

The second variation is an elaboration on the standard configuration

which allows the substitution of "robot" subjects for any number of the

s

(

-\‘@MMM 47

2

DMA?QQ;

o

L%

10

terminals interfacing with real human subjects. This is done in two stages.
First, the robots are created by the experimenter's process using the
"create robots" function:

vV [CR_ROBOTSTOA;0N]1 FD
This creates N robot processes. If N is omitted, the value is requested
at the experimenter's terminal. The use of FD and 4 is exactly as in
OCR_SUBJECTS . Subsequently, when the subjects are created, any terminal
number which is negative (i.e., -J) will be interpreted as a request to
connect the corresponding subject process to the Jth robot instead of
a real subject terminal. Subsequently, any output from the subject
process will arrive as input for the robot, and vice-versa. .Thus, a
configuration such as shown in Figure 4 can be constructed with only
minimal modification of the experimenter's process, and no change whatso-
ever to the subjéct processes.

Usually, it will not be necessary for the robot processes to
communicate directly with the experirmenter process. If this does become
necessary, however, it can be done using the [GIVE and [OGET functions
in the robot programs, and the [GIVETO and UGETFROM functions in the
experimenter program. The [UGIVETO and [GETFROM functions interpret
a ﬁegative argument (-J) as indicating thethh robot process.

At any time, a process may wait for some period of time using the
"wait" function:

vV OWAIT M
Calling this function delays the process for M milliseconds. One may
also wish to request input from a subject terminal with the understanding
that if no input is received within a specified time limit, the request

should time-out. To this end, each of the input functions has an optional

!"-\‘ g
[(FYocess /

argument which is a time limit in milliseconds:
V R« OINNUMLOTL]
V R« r[loTL]
V R« QINMIX[OTL]
If the time limit expifes, 10 is returned. (See Appendix for an

explanation of input functions.)

13

5. Low-Level Functions and Basic Building Blocks

The standard configurations described in section 4 are implemented
utilizing a set of primitive objects which can be connected together in
a variety of ways. The primitive objects are:

(5) Processes

(b) Mailboxes

(c) Terminals

(a) Files

(e) Alarm clocks
Each of these objects and the functions for manipulating them are

discussed below.

5.1 Processes
The notion of a process has already been discussed in Section 2.

n

Processes are created by calling the "create process" function:

V ID < A [OCE_PROCLOMAX;0STATE] FD
The new process starts executing in the function whose function-descriptor
is FD , which must be monadic and receives as its argument the value of
A . [MAX is the maximum number of mailboxes the new process may specify
in any single call on [RECEIVE (see below about [ORECEIVE). If MAX
is omitted, the default is 5. STATZ contains the initial values of certain
global state variables in the new process whose significance will be

explained later.

1k

OWIDTH < STATE[1] (default = 132)
ODIGITS < STATE(2] (ga=fault = 6)
PrROC <« STATEL3] (no default)

0r0_BOXES < STATE[4 5] (no default)
OIPC_BOXES < STATEL6 7] (no default)
CALARMY « STATE(8] (no default)
ORAND <« STATE[9] (default = 93117)
The value of ID returned by [CR_PROC is the "process-ID" of the new
process.
Processes are destroyed using the "destroy process" function:
v ODE_PROC ID

The process identified by ID is destroyed.

5.2. Mailboxes
For a collection of processes tc implement an experiment, at least
three kinds of communications must be possible:
(a) Communication among processes.
(b) Communication between (at lzast some of) the processes and the
terminals which interface with the subjects.
(¢) Communication between some process(es) and at least one file
for logging of experimental data as it is collected.
A1l three of these functions are accczplished through objects called
mailboxes. A mailbox is simply a first-in-first-out queue of APL data
items (i.e., scalars, vectors, matrices——anything which can be stored
in an APL variable). The following cescription treats case (a) in which
items are being communicated among processes. Later sections describe
the use of mailboxes in cases (b) and (c), involving terminals and files.

"

Mailboxes are created using the "create box" function:

15
V ID « [OCR_BOX{oN] MAX |
If ¥V is absent, this function creates a new mailbox and returns fhe integer
mailbox identifier ID to be used later in referring to the new mailbox. As
many as MAX processes may request messages from the mailbox at any given
time. If N is given, then N mailboxes are created and ID is a vector of

N mailbox identifiers. Mailboxes are destroyed using the "destroy box" function:

v ODE_BOX ID

This function destroys the mailbox identified by ID .

5.3. Sending Messages

A message may be sent to a mailbox using the "send" function:
V BOX [USEND M
If a receiver is already waiting for the message, it is transferred
immediately. Otherwise, the message waits in the mailbox uptil it is
requested. In either case, the sender continues execution immediately.
If BOX is a multi-element vector, a copy of message / is sent to all
mailboxes specified.
Using the "deliver" function:
V BOX ODELIVER M
is identical, except that the delivering process is delayed until reception

of the message(s) by the receiver(s) has occurred.
o

5.4. Receiving Messazes

A process can obtain a message from a mailbox using the "receive"
function:
V M« DRECEIVE pBOX
When [RECEIVE 1is celled, BOX identifies the mailbox from which the
message / is to be received. If BOX is a vector of different mailbox

-

identifiers, the message may come from any of the specified boxes. When

16

ORECEIVE returns, BOX is set to the identifier of the mailbox from
which the message was received. (Note that the length of BOX may not

exceed the value [MAX specified when the process was created.)

5.5. Terminal Input/Output

A terminal can be attached to a pair of new mailboxes using the

"boxes for terminal’ function:

V BOXPAIR <« [IBOXES_TERM TERM
which returns a 2-element vector (BOXPAIR) specifying the two new boxes:
an input mailbox and an output mailbox, in that order. TERM is the
terminal number.

The exact format of terminal input/output is discussed in the next
section. Generally speaking, on output, characters are printed literally,
and numeric values are always converted to their character-string
equivalents. The same is normally true on input, but the conversion of

"set

numeric substrings in the input line may be controlled using the
convert" function:
vV INBOX [SETCONV CFLAG
This function turns conversion off (on) if CFLAG = 0 (1) .
A terminal may be detached from a pair of mailboxes using the "detach"

function:

Vv ODETACH BOXPAIR

5.6. Terminal Input/Output Formatting

In an experimental situation, a high degree of control over the level
of interpretation of input is desirable. Therefore, besides the usual Quad
and Quotequad input forms, a third form of input interpretation is provided.

Generally, it interprets the input as a vector with characters distributed

17

to elements in two ways. Each longest initial subétring of characters
that can be interpreted as a number forms one numerical element, and all
other characters individually form character elements.

Examples:

3'2 1is interpreted as the two-element vector 3, 2

3-2 is interpreted as the three-element vector 3, -, 2

1.2 A-2L4.6E"1EZ is interpreted as the seven-element vector

1.2, blank, blank, A, -2.46, E, Z

A1l numeric output conversions are done using "free format'.
Conversion specifications need not be given by the programmer; they are
chosen for him according to the output values each time., If the programmer

"specified-

wants his output to be of a specific form, he may use the
format" conversion discussed in Section 5.9.

Output is converted as follows:

(a) SCALAR - A scalar character is printed literally; a scalar
nunmber is printed after being converted into its character
string equivalent in ‘integer', 'floating-point', or
'exponential' format. The format is automatically chosen
depending upon the number's magnitude and whether or not it
is ean integer,

(b) VECTOR - Each element of a vector is converted as if it were
a scalar, and the entire vector is printed with the insertion
of two blank characters betwsen the adjacent numerical elements.

(¢) MATRIX - All characters in the matrix are printed literally;
for the numerical elements, 2 single minimum width format is
first chosen such that all the numbers in the matrix can be

represented with at least one preceding blank character. Then

18

all numbers of the matrix are converted using that format.

Each row of the matrix is started on a new line. Thus, if
each column of the matrix is of the same type (either character
or number), the columns of the output will be aligned.

(d) RANK-N ARRAY - Rank-n arrays are displayed as sets of matrices
using additional linefeeds to indicate the shape of the higher
ranks.

(e) EMPTY ARRAY - The empty array is signified by a carriage-return

followed by a line feed.

5.7. File Input/Output

A process may create and destroy files using the monadic functions:
vV OCR_FILE NAME
v DFE_FILE NAME
where WNAME 1is a character-vector containing the symbolic name of the
file.
A file is attached to a new pair of mailboxes by using the "boxes
for file" function:
V BOXPAIR < [JBOXES_FILE NAIE
where a 2-element vector (BOXPAIR) is returned (as in BOXES_TERM).
Sending messages to the output mailbox causes data to be written on the
end of the file. Receiving messages from the input mailbox causes data
to be read sequentially (starting from the beginning of the file when
it is first attached). At any time, input may be restarted from the
beginning of the file using the "rewind file" function:
v ORW_FILE BOXPAIR

As in the case of terminals, a file may be detached from a pair of mail-

19

boxes using the "detach" function:
vV ODETACH BOXPAIR
The existence of a file named WNAMYE may be determined using the
"exists file" function:
VR <« UEXISTS_FILE NAME

where 1 is returned if the file exists, and O otherwise,

5.8. Alarm Clocks

An alarm clock can be attached to a mailbox, which will cause a
single message to appear iﬁ the mailbox when the alarm "rings". This is
useful in two situations:

(a) A process may wish to simply "go to sleep" for some predetermined

length of time (as in the [WAIT function of Section U).

(b) A process may wish to receive a message while insuring that it

will not wait forever if the message does not arrive (as in

the time-limit option on the terminal input functions, also

described in Section L).
In both cases, the process should call [RECEIVE , specifying the alarm
mailbox and, in case (b), the other mailbox(es) on which the time-limited
message is expected.

Each process is automatically given a private mailbox preattached to
an alarm clock. The mallbox-identifier is stored in the global wvariable
(MLARM 1in the process. New alarm mailboxes may be created using the
"box for alarm' function:

V B « [BOX_ALAR!
Note that any attempt to send or deliver messages to an alarm mailbox is

.illegal.

20

An alarm clock is set using the "set alarm clock" function:
vV USET_ALARM[OALARM] TIME
‘This causes the alarm clock to "ring" in [TIME milliseconds. If
ALARM is omitted, [ULARY 1is used.
An alarm clock may be reset at any time by calling the "reset alarm
clock" function:
V OREMAIN < [JRESET_ALARM[OALARM]
If ALARM is ommitted, [JALARM is used. This empties the alarm mailbox
and if the alarm was previously set but has not yet "rung", the ring is
cancelled. The time remaining until the cancelled ring is returned to
REMAIN . (If no ring was pending, zero is returned.) Using these functiomns, &
process can wait for some message M +via mailbox B by executing:
SET_ALARM LIMIT
M <« [ORECEIVE BOX < B,JALARM
R < ORESET_ALARM
WAIT < LIMIT = R
In this example, if [/ never arrives, the process will wakeup after
LIXNIT milliseconds with WAIT set equal to LIMIT , and BOX equal to
[UALARM . On the other hand, if ¥/ arrives before LIMIT milliseconds
have elapsed, WAIT will contain the length of time the process waited

for M , and BOX will be equal to B .

5.9. Specified-Format Conversion

Any data object in APL may be converted to its external form by the

funection:
V HEESULT < [OCONVERT [OFCRMAT] OBJ

where OBJ 1s the data object, FORMAT 1is a matrix of pairs of numbers,

21

and FRESULT 1is the character matrix of OBJ in external form. Each

pair of numbers in FORMAT has the meaning total field width and fraction

field width, respectively. ZEach pair of numbers is used to control the
conversion of a column of the array. The last pair controls all successive
columns.

A1l aspects of specifiéd—format conversion are the same as in free-
format (see Section 7) if the optional argument, FORMAT , is not given.
If FORMAT is given, then it is used to specify the numeric conversion
formats. The total field width may be chosen by the user or, if set to
zero, is chosen by the function such that at least one space will be left
between adjacent numbers. The format to be used is determined by the
fraction field width. If it is zero, integer format is used. It it is
positive, then it indicates the desired number of digits after the decimal
point. If it is negative, its absolute value minus one is the desired
number of digits after the decimal point, and exponential format is used.

Specified-format conversion has to particuiar applications. The
first is to allow better control of terminal output formatting. Terminal
output of aﬁy form can be composed by first converting therutput data
using UCONVERT and then sending the resulting character matrix to the
output terminal.

The second application involves writing data files which are to be
used in other computer systems. When APL data objects are written on
data files, the internal representation of that object is put on the file,
However, this is inadequate if the file contains numbers and the file is
used by another computer system because different computer systems may
~use different internal representation for its numbers. Thus, numbers
must first be converted to an external from (character matrix equivalent)

using [CONVERT before they are written onto the file.

22

6. Conventions Used by High-Level Functions

The conventions used in constructing the standard experiment’
configurations are relatively straightforward. EFach of the bi-directional
communication channels is & pair of mailboxes which are attached to a
terminal or file in the appropriate cases. The mailbox identifiers of
the various mailboxes are stored in certain standard global variables in
the memory of the various processes. Every process has a scalar [JPROC
containing its own process number and a two-element vector naméd
[(0I0_BOXES , specifying an input and an output mailbox which are used
whenever the standard APL input/output operations are executed. Similarly,
the subject processes and robot processes each have a two-element vector
called [IPC_BOXES , specifying the mailboxes used by [GET and [GIVE ,
in that order. (In the experimenter's process, [IPC_BOXES is undefined.)
The overall configuration of the experiment is recorded in the matrices
[(SUBJECTS and [ROBOTS in the experimenter's process. These are

formatted as follows:

elenment data from Ith subject process

OSUBJECTS [I31]

1]

process-identifier

0sUBJECTS [T52] terminal number (or robot)

OSUBJECTS [I;3 4] = [II0_BOXES

D%&E@B[L56]=DEQ&M$
OSUBJECTS [I37] = [DALARM
elerent data from Jth robot process

OROBOTS [J31] process-identifier

OrOBOTS [J32 31 = [OI0_BOXZ3
CrROBOTS [J34 51 = (JIPC_BOXES
[ROBOTS [J36] = [JALAR!

23

Also defined after [JCR_LOG has been called, is the two-element vector
OLOG_BOXES , specifying the pair of mailboxes attached to the daté—logging
file.
Note that in an experiment using robots, if the Ith subject process
is connected to the Jth robét process, that the terminral number of subject
I (i.e., [OSUBJECTS[I;2]) is —J , and that [0I0_BOXES in subject I is just
¢ OI0_BOXES in robot o , thus setting up the connection between them.
Using the information in this section, the programmer can create
modified versions of the standard configurations of Section L. For example,
to set up the situation in Figure 5, one can create a standard two-subject
experiment and then establish the direct subject-to-subject channel by
having the experimenter's process create two new mailboxes (identified
by say J and K) and pass the pairs J,K and K,J to the two subjects,

who can then communicate directly using USEND and [DRECEIVE .

APPENDIX 1

Operators not in CRMS APL

OPERATOR

8|

®

NAME

Matrix division
Protected Junction
Rotate, 2nd dimension

Quad output

25

APPENDIX 2

26

Overstrike Transliterations

Currently, overstrike characters are not implemented. Operators with

overstrike-character name sre renamed as follows:

SYMBOL

Al

L d

REPLACEMENT SYMBOL

NAND

NOR

UPGRADE

DOWNGRADE

LN

EXCLAMATTON

TRANSPOSE

'ROTATE

n
-

LIQUOTE

NAME

Nand

Nor

Up grade

Down grade

Logarithm

Factorial and Combination
Transpose

Rotate and Reversal
Comment

Quote~quad

Quote input operator

27
APPENDIX 3

Additional primitive functions in CRMS APL

1) VR<+ 14
L returns the type of A4 (or elements of 4).
1 if the element is numeric, O if character
2) VR« TA
T converts between character and its internal ASCII code equivalent.
3) VR+e4
€ returns 1 if A is defined, O otherwise
L) v ORANDSET A
Set "random seed" to 4
5) V A< OmwnuvM [orL]
OINNUM returns a vector of numbers from the terminal. TL is time
limit of wait. 10 is returned if time limit is exceeded.
6) V A <« 0OINMIX [oTL]
OINMIX returns a vector of numbers and characters from the terminal.
TL is the time limit.
T) V A <« v[oTL]
(same as [returns a vector of characters from the terminal.
TL is the time limit.
8) VA<« QOrrve
O7IME returns the time.

The values are:

A[1] = year _ Al5] = minute
Al2] = month Al6] = second
Al3] = day Al7] = millisecond
Al4] = hour AL8] = microsecond

	1. Introduction
	2. Processes
	3. The Two Levels of Library Functions
	4. High-Level Functions for Standard Configurations
	5. Low-Level Functions and Basic Building Blocks
	6. Conventions Used bgy High-Level Functions
	Appendices
	1. Operators not in CRMS APL
	2. Overstrike Transliterations
	3. Additional primitive functions in CRMS APL

