
WRITING BEHAVIORAL EXPERTME:r..,rTs IN CRMS APL:

PROGRAMMERS' :V1ANUAL

(PRELIMINARY VERSION)

Paul Gee

Wiley Greiner

Sheldon Linker

David Redell

July 15, 1974

Systems Group

Technical Document

Center for Research in Management Science

University of California

Berkeley

This work was done as part of the Systems Development effort under
National Science Foundation Grant GS-32138.

1. Introduction

APL\360 and most subsequent implementations of the APL language

have been oriented around a view of man-machine interaction in which

1

each person at his terminal is served by a single sequentially executing

program, over which he exercises complete control. While this view

certainly reflects accurately a majority of applications of interactive

computing, it fails rather badly to cope with several aspects of on-line

control of multi-subject behavioral experiments. In particular, it

assumes:

(a) That there is no direct interaction between the programs

serving different people.

{b) That there is a one-to-one correspondence between programs,

people, and terminals.

(c) That all program activity is initiated by a person at a

terminal, who may interrupt, modify, and otherwise interfere

with the program at will.

At least one new variant of APL\360 (!!APL SV") attempts to

eliminate assuir:rption (a) above, but it has left assumptions (b) and (c)

in force. The system described below is a much wider departure from

APL\360, which attempts to provide a more suitable environment for

expericent control by eliminating all three of the unsuitable assumptions

mentio:::ed above.

2

2. Processes

Following standard operating-system terminology, we refer to "a

program in execution" as a nrocess. It is intended that an experiment

be written as a collection of several cooperating processes, started

at appropriate (perhaps different) places in the same APL program.

Logically, these processes are best thought of as separate, disjoint

copies of the program. (The fact that certain parts of the program

are shared in order to conserve memory is invisible; in particular,

there is E.9.. logical sharing of any variables, local or global, between

separate processes.)

It would be possible, of course, to avoid the idea of processes

by forcing a single experiment program to explicitly deal with multiple

subjects at terminals, experimenter intervention, data,logging, and

so on. Experience with other systems has shown, however, that such

intrinsically parallel tasks can be handled more conveniently by

several "copies" of a program, running in parallel (i.e., several

processes).

In an experimental situation, the people interacting with terminals

(or other interface equipment) are not "users" in the normal sense and

must be given neither privileges nor responsibilities normally

associated with "users". In particular, they must be neither responsible

for the initiation of program execution (process creation) nor capable

of termination of program execution (process destruction). Moreover,

some processes within an experiment may not be associated with any terminal

at all.

For the above reasons, the system allows processes to be created

and destroyed by other processes. Except for the initial process (which

3

is created by a command from the controlling terminal--see USERS' GUIDE}

all processes in an experiment are created in this way.

3. The Two Levels of Library Functions

The library fu....ri.ctions available to users for constructing multi­

process experiments are divided into two groups:

(a) "High-level" f'unctions wb.ich allow easy construction of

standard experiment configurations.

(b) "Low-level" functions which manipulate the basic building

blocks of experiments in nore flexible but rather more

complicated ways.

4

The low-level functions are used in a stylized fashion by the high-level

functions to construct the most frequently used types of configurations.

Section 4 describes the high-level functions in sufficient detail

for the construction of standard configurations. Section 5 describes

the basic building blocks and the low-level functions for manipulating

them. This information allows the p~ograrn.mer to completely ignore the

high-level fu...ri.ctions and construct eny unusual configuration desired.

Between these two extremes lies the approach of constructing a standard

configuration using the high-level functions, and then slightly rearranging

things using a few calls on low-leve~ functions. In general, this is much

less work than starting "from scratc::", even though it requires some

knowledge of how the high-level functions use the basic building blocks.

This information is contained in Section 6.

Sections 1 through 4 and the appendices are sufficient for writing

most experiments; hence Sections 5 a!':.d 6 may be skipped on a first reading.

-5

4. High-Level Functions for Standard Configurations

The standard experiment configuration is shown in Figure 1. Here,

the initial process is the e?CPerimenter's process which creates and

supervises as many subject processes as desired. The bi-directional

communication channels, shown as double-ended arrows, allow the processes

to communicate with each other and with their terminals. A terminal

connected to a subject process is called a subject terminal. The terminal

connected to the experimenter's process is called the experimenter's

terminal, and is not, in general, the same as the controlling terminal

from which the experiment was started. The data log is a file in which

the experimenter's process may log any desired data as the experiment

progresses.

The experimenter's process creates subjects by calling the "create

subjects" functiont:

V OCR_SUBJECTS[oA;oT] FD

This creates one or more subject processes attached to the terminal(s)

specified by T. The number of subjects created is pT. If Tis omitted,

the experimenter is asked to enter the value of T from his terminal. The

subject processes start execution in the function whose "function-descriptor"

is FD. (The function-descriptor of F can be obtained using monadic

$--i.e., $F .) This function must be monadic, and receives as its argument

the value of A . (Thus, the new process starts running as if it had

executed the statement FA .) If A is omitted 10 is passed.

There is no rule against calling □CR_SUBJECTS more than once, hence

the subject processes may be created individually, in several batches, or

all at once. At all times, the matrix [J:JUBJECTS contains information

on all existing subject processes. In particular, the correspondence

tNote C:RMS APL argu:ment notation: o means "optional", p means "by reference".

0

Standard Configuration

Figure 1

Data
Log

6

7

between subject processes and subject terminals is kept track of by making

the value of [!SUBJECTS [I;2] be the terminal number of the terminal

attached to the Ith subject process. (There is other information in

[ElJBJEC'l'S , but this can be ignored :for standard configurations. It is

discussed in Section 6.)

The experimenter's process creates the data log using the "create log"

function:

'ii OCR_LOG[oNAME]

NAfafE is the filename of the logging file. If NAl£E is omitted, its

value is requested from the experimenter's terminal. If the named file

already exists, it's old contents will be overwritten.

Once the experiment is set up and running, the various processes

must be able to communicate data over the appropriate channels. The

interface to the terminal channels is simply the familiar input/output

convention of APL\360 with certain local modifications. (For example,

quad-input is weakened considerably to prevent a subject at a terminal

from interfacing with the subject process controlling that terminal, as

discussed in Section 1.) Input/output is discussed in more detail in

Sections 5-5 and 5.6.

The channels between the experiEenter and the subjects are used

by calling four special f1.L.~ctions. Two of these are for the subject

processes:

V OGIVE M

'ii M + DGET

Calling DGIVE passes message M to the experimenter's process. Calling

DGET returns the next rressage sent to this subject process by the

experimenter's process. The other two functions are for the experimenter's

8

process:

V M OGIVETO I

V M +- [JJETFROii pI

Calling [JJIVETO sends message J,J to the Ith subject process. Calling

['f;ETFROU returns the next message sent by the Ith subject process. If

I is a vector, the message may come from any of the specified subjects.

When [JJETFROM returns, I is set to the number of the subject process

which is sent M.

The channel to the data log is accessed by the "log" function:

V []iOG X

Calling []iOG writes the value of X on the data log.

There are two useful variations on the standard configuration which

are also supported by the high-level functions. The first is the simple

one-terminal experiment, as shown in Figure 2. The programmer here writes

the program for the subject process, but need not write a program for

the experimenter's process. Instead, a standard experimenter program

named ['SINGLE may be started, which will start the subject program in

its first function and turn over the experimenter's terminal to it. If

several such one-terminal experiments are desired, as in Figure 3, starting

the experimenter program [l'~JLTIPLE will request that the terminal numbers

be entered at the experimenter's terminal, and then will start a subject

process for each terminal specified. Of course, the subject progra.,~s

must refrain from using the [)':;IVE and DGET functions, since there is

no real experimenter process for them to talk to.

The second variation is an elaboration on the standard configuration

which allows the substitution of "robot" subjects for any number of the

r·~
/- ,{/J U.J' (;

,: -"--· '-,..or-,

' \

k~-~·_A_, '---]. (j~

10

terminals interfacing with real hu:nan subjects. This is done in two stages.

First, the robots are created by the experimenter's process using the

"create robots" _function:

V []CR_ROBOTS[oA;oN] FD

This creates N robot processes. If N is omitted, the value is requested

at the experimenter's terminal. The use of FD and A is exactly as in

Cf:R_SUBJECTS • Subsequently, when the subjects are created, any terminal

number which is negative (i.e., -J) will be interpreted as a request to

connect the corresponding subject process to the Jth robot instead of

a real subject terminal. Subsequently, any output from the subject

process will arrive as input for the robot, and vice-versa .. Thus, a

configuration such as shown in Figure 4 can be constructed with only

minimal modification of the experimenter's process, and no change whatso-

ever to the subject processes.

Usually, it will not be necessary for the robot processes to

communicate directly with the experiTienter process. If this does become

necessary, however, it can be done using the □GIVE and □GET functions

in the robot programs, and the □GTV::'TO and □GETFROU functions in the ..
experimenter program. The □GIVETO and □GETFROM functions interpret

a negative argument (-J) as indicating the Jth robot process.

At any time, a process may wait for some period of time using the

"wait II function:

V □WAIT M

Calling this function delays the process for M milliseconds. One may

also wish to request input from a subject terminal with the understanding

that if no input is received within a specified time limit, the request

should time-out. To this end, each of the input functions has an optional

argument which is a time limit in milliseconds:

'iJ R+ OINNUl,t[oTL]

'iJ R+ 1-[oTL]

V R+ OINMIX[oTL]

If the time limit expires, 10 is returned. (See Appendix

explanation of input functions.)

12

for an

13

5. Low-Level Functions and Basic Building Blocks

The standard configurations described in section 4 are implemented

utilizing a set of primitive objects which can be connected together in

a variety of ways. The primitive objects are:

(a) Processes

(b) Mailboxes

(c) Terminals

{ d) Files

(e) Alarm clocks

Each of these objects and the functions for manipulating them are

discussed below.

5.1 Processes

The notion of a process has already been discussed in Section 2.

Processes are created by calling the "create process" function:

V ID + A OCR_PROC[oMAX; oSTATE] FD

The new process starts ~xecuting in the function whose flL~ction-descriptor

is FD, which must be monadic and receives as its argument the value of

A • t~.X is the maximum number of mailboxes the new process may specify

in any single call on ORECEIVE (see below about ORECEIVE) • If MAX

is omitted, the default is 5. STATE contains the initial values of certain

global state variables in the new process whose significance will be

explained later.

14

□~lIDTH + STATE[1] (default = 132)

r:J]IGITS + STATE[2] (default = 6)

[]PROC + STATE[3] (no default)

OIO_BOXES + STATE[4 5] (no default)

OIPC_BOXES + STATE[6 7] (no default)

[lALARU + STATE[B] (no default)

[]RAND+ STATE[9] (default= 93117)

The value of ID returned by □CR_PROC is the "process-ID" of the new

process.

Processes are destroyed using the "destroy process" function:

V L'JJE_PROC ID

The process identified by ID is destroyed.

5. 2. Mailboxes

For a collection of processes tc implement an experiment, at least

three kinds of communications must be possible:

(a) Communication among processes.

(b) Communication between (at least some of) the processes and the

terminals which interface v.~th the subjects.

(c) Cor:mn.J.J.'1.ication between some yrocess(es) and at least one file

for logging of experimental data as it is collected.

All three of these fu..'1.ctions are accc:::.plished through objects called

mailboxes. A mailbox is simply a first-in-first-out queue of APL data

items (i.e., scalars, vectors, matrices--anything which can be stored

in an APL variable). The following description treats case (a) in which

items are being communicated among pr:icesses. Later sections describe

the use of mailboxes in cases (b) and (c), involving terminals and files.

Mailboxes are created using the "create box" function:

15

V ID + □CR_BOX[oN] MAX

If N is absent, this function creates a new mailbox and returns the integer

mailbox identifier ID to be used later in referring to the new mailbox. As

many as l-1/;X processes may request messages from the mailbox at any given

time. If ll is given, then N mailboxes are created and ID is a vector of

N mailbox identifiers. Mailboxes are destroyed using the "destroy box" function:

V □DE_JWX ID

This function destroys the mailbox identified by ID.

5,3. Sending Messages

A message may be sent to a mailbox using the "send" function:

V BOX [!SEND M

If a receiver is already waiting for the message, it is transferred

immediately. Otherwise, the message waits in the mailbox until it is

requested. In either case, the sender continues execution immediately.

If BOX is a multi-element vector, a copy of message U is sent to all

mailboxes specified.

Using the "deliver" function:

V BOX □DELIVER M

is identical, except that the delivering process is delayed until reception

of the message(s) by the receiver(s) has occurred.

5.4. Receiving Messages

A process can obtain a message from a mailbox using the 11receive"

function:

V M + ORECEIVE pBOX

When ORECEIVE is called, BOX identifies the mailbox from which the

message Mis to be received. If BOX is a vector of different mailbox

identifiers, the message may come from any of the specified boxes. When

16

ORECEIVE returns, BOX is set to the identifier of the mailbox from

which the message was received. (:Note that the length of BOX may not

exceed the value M.4X specified when the process was created.)

5.5. Terminal Input/Output

A terminal can be attached to a pair of new mailboxes using the

"boxes for terminal" function:

'v BOXPAIR + [!IOXES _TERM TERM

which returns a 2-element vector (BOXPAIR) specifying the two new boxes:

an input mailbox and an output mailbox, in that order. TERM is the

terminal number.

The exact format of terminal input/output is discussed in the next

section. Generally speaking, on output, characters are printed literally,

and numeric values are always converted to their character-string

equivalents. The same is normally true on input, but the conversion of

numeric substrings in the input line may be controlled using the "set

convert" function:

'v INBOX OS'ETCONV CFLAG

This fu.~ction turns conversion off (on) if CFLAG = 0 (1) .

A terminal may be detached from a pair of mailboxes using the "detach"

function:

'v OJ)ETACH BOXPAIR

5.6. Terminal Input/Output Formatting

In an experimental situation, a high degree of control over the level

of interpretation of input is desirable. Therefore, besides the usual Quad

and Quoteq_uad input forms, a third form of input interpretation is provided.

Generally, it interprets the input as a vector with characters distributed

17

to elements in two ways. Each longest initial substring of characters

that can be interpreted as a number forms one numerical element, arid all

other characters individually form character elements.

Examples:

3-2 is interpreted as the two-element vector 3, -2

3-2 is interpreted as the three-element vector 3, -, 2

1.2 A-24.6E-1EZ is interpreted as the seven-element vector

1.2, blank, blank, A, -2.46, E, Z

All numeric output conversions are done using "free format".

Conversion specifications need not be given by the programmer; they are

chosen for him according to the output values each time. If the programmer

wants his output to be of a specific form, he may use the "specified­

format" conversion discussed in Section 5.9.

Output is converted as follows:

(a) SCALAR - A scalar character is printed literally; a scalar

number is printed after being converted into its-character

string equivalent in 'integer', 'floating-point', or

'exponential' format. The format is automatically chosen

depending upon the number's magnitude and whether or not it

is an integer.

(b) VECTOR - Each element of a vector is converted as if it were

a scalar, and the entire vector is printed with the insertion

of two blank characters bet:,een the adjacent numerical elements.

(c) MATRIX - All characters in the matrix are printed literally;

for the numerical elements, a single minimum width format is

first chosen such that all the numbers in the matrix can be

represented with at least o~e preceding blank character. Then

all numbers of the matrix are converted using that format.

Each row of the matrix is started on a new line. Thus, if

18

each column of the matrix is of the same type (either character

or number), the columns of the output will be aligned.

(d) RANK-N ARRAY - Rank-n arrays are displayed as sets of matrices

using additional linefeeds to indicate the shape of the higher

ranks.

(e) EMPTY ARRAY The empty array is signified by a carriage-return

followed by a line feed.

5.7. File Input/Output

A process may create and destroy files using the monadic functions:

'i/ [JCR_FILE NA,'efE

'i/ ODE_FILE NAl.fE

where NAtfE is a character-vector containing the symbolic name of the

file.

A file is attached to a new pair of mailboxes by using the "boxes

for file" function:

'i/ BOXPAIR + [J30XES _FILE NAZJE

where a 2-element vector (BOXPAIR) is returned (as in BOXES_TERM).

Sending messages to the output mailbox causes data to be written on the

end of the file. Receiving messages from the input mailbox causes data

to be read sequentially (starting from the beginning of the file when

it is first attached). At any time, input may be restarted from the

beginning of the file using the "rewind file" function:

V C'R'il_FILE BOXPAIR

As in the case of terminals, a file may be detached from a pair of mail-

boxes using the "detach" :function:

V ODETACH BOXPAIR

The existence of a file named NA:tE may be determined using the

"exists file" function:

VR + OEXISTS _FILE NAIJE

where 1 is returned if the file exists, and O otherwise.

5.8. Alarm Clocks

19

An alarm clock can be attached to a mailbox, which will cause a

single message to appear in the mailbox when the alarm "rings". This is

useful in two situations:

(a) A process may wish to simply "go to sleep" for some predetermined

(b)

length of time (as in the □WAIT :function of Section 4).

A process may wish to receive a message while insuring that

will not wait forever if the message does not arrive (as in

the time-limit option on the terminal input :functions, also

described in Section 4).

it

In both cases, the process should call [)RECEIVE, specifying the alarm

mailbox and, in case (b), the other mailbox(es) on which the time-limited

message is expected.

Each process is automatically given a private mailbox preattached to

an alarm clock. The mailbox-identifier is stored in the global variable

Q4L.4RM in the process. New alarm mailboxes may be created using the

"box for alarm" function:

V B + rnox_ALAR;~J

Note that a..'1y attempt to send or deliver messages to an alarm mailbox is

illegal.

20

An alarm clock is set using the "set alarm clock" function:

V OS'ET_ALARM[oALARM] TIHE

This causes the alarm clock to "ring" in TIME milliseconds. If

ALARM is omitted, []ALARM is used.

An alarm clock may be reset at any time by calling the "reset alarm

clock" function:

V OREMAIN + ORES ET _ALARM[oALARM]

If ALARM is ommitted, []ALARM is used. This empties the alarm mailbox

and if the alarm was previously set but has not yet "rung", the ring is

cancelled. The time remaining until the cancelled ring is returned to

REl!AIN. (If no ring was pending, zero is returned.) Using these functions, a

process can wait for some message M via mailbox B by executing:

OS'ET_ALARM LIMIT

M + ORECEIVE BOX+- B,04.LARU

R +- ORESET_ALARM

WAIT+ LIMIT .: R

In this example, if M never arrives, the process will wakeup after

L I!,;IT milliseconds with WAIT set eq_ual to LIMIT , and BOX eq_ual to

OALARN . On the other ha..nd, if lf arrives before LIMIT milliseconds

have elapsed, WAIT will contain the length of time the process waited

for M , and BOX will be eq_ual to B •

5.9. Specified-Format Conversion

Any data object in APL may be converted to its external form by the

function:

V RESULT + □CONVERT [oFORNAT] OBJ

where OBJ is the data object, FORHAT is a matrix of pairs of numbers,

2l

and RESULT is the character matrix of OBJ in external form.· Each

pair of numbers in FORtfAT has the meaning total field width and ·fraction

field width, respectively. Each pair of numbers is used to control the

conversion of a column of the array. The last pair controls all successive

columns.

All aspects of specified-format conversion are the same as in free­

format (see Section 7) if the optional argument, FORftfAT, is not given,

If FOR!JAT is given, then it is used to specify the numeric conversion

formats. The total field width may be chosen by the user or, if set to

zero, is chosen by the function such that at least one space will be left

between adjacent numbers. The format to be used is determined by the

fraction field width. If it is zero, integer format is used. It it is

positive, then it indicates the desired number of digits after the decimal

point. If it is negative, its absolute value minus one is the desired

number of digits after the decimal point, and exponential format is used,

Specified-format conversion has to particular applications. The

first is to allow better control of terminal output formatting. Terminal

output of any form can be composed by first converting the output data

using □CONVERT and then sending the resulting character matrix to the

output terminil.

The second application involves writing data files which are to be

used in other computer systems. When APL data objects are written on

data files, the internal representation of that object is put on the file,

However, this is inadequate if the file contains numbers and the file is

used by another computer system because different computer systems may

_use different internal representation for its numbers. Thus, numbers

must first be converted to an external from (character matrix equivalent)

using □CONVERT before they are written onto the file.

22

6. Conventions Used by High-Level Functions

The conventions used in constructing the standard e:iq:ieriment·

configurations are relatively straightforward. Each of the bi-directional

communication cha...~nels is a pair of mailboxes which are attached to a

terminal or file in the appropriate cases. The mailbox identifiers of

the various mailboxes are stored in certain standard global variables in

the memory of the various processes. Every process has a scalar OPROC

containing its own process number ar,d a two-element vector named

OIO_BOXES, specifying an input and an output mailbox which are used

whenever the standard APL input/output operations are executed. Similarly,

the subject processes and robot processes each have a two-element vector

called OIPC_BOXES , specifying the mailboxes used by OGET and OGIVE,

in that order. (In the experimenter's process, [JIPC_BOXES is undefined.)

The overall configuration of the experiment is recorded in the matrices

IBUBJECTS and []l?OBOTS in the e:iq:ie:ri:menter' s process. These are

formatted as follows:

element data from Ith subject process

Q<JUBJECTS [I; 1] = process-icentifier

CSUBJECTS [I;2 J = terminal n-t.1"1ber (or robot)

['SUBJECTS [I;3 41 = []IO_BOXES

QSUBJECTS [I;5 6] = OIPC_BOXES

[]SUBJECTS [I; 7] = []ALA.RH

eleEent data from Jth robot process

CROBOTS [J; 1 J = process-identifier

[]F.'0B0TS [J;2 3] = []IO B()Y':' 1 - J,_~o

OROBOTS [J;4 5] = []IPC_BOXES

[L'?OBOTS [,J; 6 J = OALAR.','

23

Also defined after □CR_LOG has been called, is the two-element vector

01,0G_BOXES specifying the pair of mailboxes attached to the data-logging

file.

Note that in an ex~eriment using robots, if the Ith subject process

is connected to the Jth robot process, that the terminal number of subject

I (i.e., OS'UBJECTS[I;2]) is -J , and that □IO_BOXES in subject I is just

¢ □IO_BOXES in robot J, thus setting up the connection between them.

Using the information in this section, the programmer can create

reodified versions of the standard configurations of Section 4. For example,

to set up the situation in Figure 5, one can create a standard two-subject

experiment and then establish the direct subject-to-subject channel by

having the experimenter's process create two new mailboxes (identified

by say J and K) and pass the pairs J,K and K,J to the two subjects,

who can then communicate directly using OS'END and []RECEIVE.

·sJ\JS~
~{cCq~

_i-.

/'"\
;

r _,-t,J__"': ·_;·,:'r l /~ .. [' '

,.'

APPENDIX 1

Operators not in CRMS APL

OPERATOR

ffi

V,

e

D

NAME

Matrix division

Protected Junction

Rotate, 2nd dimension

Quad output

25

26

APPENDIX 2

Overstrike Transliterations

Currently, overstrike characters are not implemented. Operators with

overstrike-character name are rena...~ed as follows:

SYMBOL REPLACEMENT SYMBOL NAME

NAND Nand

NOR Nor

UPGRADE Up grade

DOWNGRADE Down grade

LN Logarithm

EXCLAMATION Factorial and Combination

TRANSPOSE Transpose

ROTATE Rotate and Reversal

A n Comment

[!] t- Quote-quad

□QUOTE Quote input operator

APPENDIX 3

Additional primitive functions in CRMS APL

1) V R + .L A

.L returns the type of A (or elements of A).

1 if the element is numeric, 0 if character

2) V R + TA

27

T converts between character and its internal ASCII code equivalent.

3) V R + e: A

e: returns 1 if A is defined, 0 otherwise

4) V QRANDSET A

Set "random seed" to A

5) V A + OINNUJ.1 [oTL]

OINNUM returns a vector of numbers from the terminal. TL is time

limit of wait. 10 is returned if time limit is exceeded.

6) V A + 0INl1IX [oTL]

7)

8)

OINMIX returns a vector of numbers and characters from the terminal.

TL is the time limit.

'ii A + t-[oTL]

(same as [!] returns

TL is the time limit.

'ii A + OTik'E

OTifvIE returns the time.

The values are:

A[1] = year

A[2] = month

A[3] = day

A[4] = hour

a vector of characters from the terminal.

A[5] = minute

A[6] = second

A[7] = millisecond

A[8] = microsecond

	1. Introduction
	2. Processes
	3. The Two Levels of Library Functions
	4. High-Level Functions for Standard Configurations
	5. Low-Level Functions and Basic Building Blocks
	6. Conventions Used bgy High-Level Functions
	Appendices
	1. Operators not in CRMS APL
	2. Overstrike Transliterations
	3. Additional primitive functions in CRMS APL

