Research Report LR-2k
A COMPUTER SYSTEM PROVIDING MICROCODED APL
Charles A. Grant

Mark L. Greenberg
David D. Redell

University of California, Berkeley
January 1974

Note:

Research Reports
in
Computer Controlled Behavioral

Experiments

Research Report LR-2L
A COMPUTER SYSTEM PROVIDING MICROCODED APL

Charles A. Grant
Mark L. Greenberg
David D. Redell

University of Californis, Berkeley

January 19Tk

This research report is duplicated for private circulation and
should not be quoted or referred to in publications without
permission of the author.

A COMPUTER SYSTEM PROVIDING MICROCODED APL
Charles A. Grant

Mark L. Greenberg
David D. Redell

Center for Research in Msnagement Science
University of California

Berkeley, California

A new computer system is now under development at the Center for
Research in Management Science (CRMS) of the University of California,
Berkeley., It is an inexpensive, medium-scale time-sharing system,
whose primary application is the implementaﬁion of multiterminal,
interactive simulation experiments for the purpose of social science
research. This paper describes the APL-language subsystem implemented
on this system.

The CRMS APL language system includes a microcoded APL interpreter
which is implemented on a high-speed microprocessor. 1In addition to
an extremely high rate of execution, CERMS APL offers a unified facility
for terminal, input/output, file accessing, ahd multi-process synchro-

nization and inter-~-communicetion in APL.

A COMPUTER SYSTEM PROVIDING MICROCODED APL
Charles A. Grant

Mark L. Greenberg
David D. Redell

Center for Research in Management Science

University of California

Berkeley, Californis

Introduction

The Management and Behavioral Sciences Laboratory of the Center for
Research in Meanagement Science (CRMS)+ is fundede to further computer-
aided research in the social sciences. The mejJor emphasis has been
computer controlled, multi-subject simulation experiments. In 1970, it
was decided to replace the Laboratory's saging computer facilities in
order to allow experiments to be programmed in the APL language. An
important requirement was rapid response to computationally demanding
experiments involving up to 32 terminals. The possibility of developing

an APL interpreter implemented in microcode was investigated [1].

+26 Barrows Hall, University of California, Berkeley, California 9h720.

"TNSF Grant NSF-GS-32138.

N

With the objective of providing flexible computer facilities which
could meet the ever-changing needs of a research laboratory, work was
begun in the spring of 1972 on a general-purpose time-sharing system
which would include an APL-language subsystem employing a microcoded
interpreter. The configuration of the CEMS Computer System is shown in
Figure 1.

The function of the central processor is to implement a general-
purpose time-shared operating system performing the functions of input/
output management, memory management, scheduling of user programs,
and provision of system librarj services, The current system includes
6lk 32-bit words of core memory, two 12-million-word disk units, one
tape drive, and provisions for the connection of up to 64 terminals.
The APL processor is connected by "start" and "stop" signals to the
central processor and has access to the core memory.

The central processor and the APﬁ processor were both implemented
as microprograms for four reasons:

(1) To provide flexibility in deciding which features of the

system should be optimized.
(2) To allow efficient inclusion into the architecture of the
system of such features as protection by capabilities,
a large virtual address space, and process (software
task) synchronization [2].

(3) To ®llow for microcode implementation of most of the (normally
hardware-implemented) functions of peripheral device control
units in order to reduce system complexity, cost, and main-

tenance expense. In particular, the terminal multiplexor.

Central Processor
APL Processor

(controls APL processor (interprets APL programe)

& runs operating system)

Core Memory
6Lk x 32 bits
(1 usec)

Terminals

)

Secondary (Disk) Memory
2WM x 32 bits

Tape Memory

Figure 1,
CRMS Computer System Configuration

(4)

disk channel, printer channel, and tape channel are implemented
as subroutines of the central-processor microprogram.
To eliminate the interface problems which might have arisen had

two dissimilar hardware processors been used.

The central processor and the APL processor are microprogrammed on

separate Digital Scientific Corporation METAY computers. The micro-

instruction time is 90 nanoseconds.

CRMS APL

The CRMS APL language is essentially the same as APL\360 [L4], but

does differ from it in four fundamental ways:

(1)

Function parameters: CRMS APL provides for the passing of up

to 15 arguments to & niladic, monadic, or dyadic function.
For example:

A« B F[X;Y32] C
says, '"Call dyadic function F with three extra arguments,
X, Y, and 2." Extra arguments may be classified as optional
extra arguments in the function header. The calling function
need not supply the parameters corresponding to optional
extra arguments.

A+« BF[;Y;]¢C

is one such call. In this case, the formal parameter
corresponding to the first and third extra arguments have the
"undefined" (value grror) value. A primitive function is
provided which detects the presence of the "undefined" value

without causing an error.

(2) Parameter pnssing: The abllity to pass parameters by reference

is included in CRMS APL. Unlike normal arguments, an argument
passed by reference may be modified by the called function.
Specification that a parameter is to be passed by reference is
made in the function's definition header.

(3) Scope of names: Rather than "dynamic localization" of names

as used in APL\360, CRMS APL uses "static localization." Thus,
in CRMS APL a local variable of a function may be referenced
only within the definition of that function and may not be
referenced from a subsequently called function, as in APL\360.
This change allows for more efficient interpretation of APL
programs, yet imposes very little limitation on the APL
programmer,

(k) Mixed arrays: The elements of a CRMS APL array may be any

mixture of numbers and characters. This feature, described
by Iverson [3], was omitted from APL\360.

Before execution is initiated on a CRMS APL program, it is translated
into the "object language," which is processed by the APL processor. The
translator is a program which runs on the central processor. This
translation process includes the conversion of decimal numeric constants
into internal form, the conversion of symbolic names into memory addresses,
and the parsing of each statement into postfix Polish form. The parsing
of statement; before execution time is possible as a result of the "static
localization” rule for determining the interpretation of a name. Parsing

must be done at runtime with dynamic localization as used in APL\360

because correct syntactic analysis of a statement sometimes depends upon
the exact sequence of function calls which led to the statement's execution
(5].

Once transliated, an APL program may be submitted to a module of the
operating system called the APl Maneger, which schedules the use of the
APL processor among all the "resdy" APL programs. The APL Manager
communicates with the APL procegsor by using the "start" and "stop" signal
wires and memory cells designated for inter-processor messages.

The APL processor is a microprogram (approximately 2000 32-bit
microinstructions) which is divided into two parts: controller and
executer. The controller idles until it receives a start signal., Upon
receiving a start signal, the controller iooks in the message cells for
the addresses describing the location in core memory of the code and
date "segments" of the program (q.v.). The current state of the program
(e.g., progrém counter, stack length) is then loaded, and execution is
begun. The controller is invoked again if s "stop' signal is received,
if an execution error occurs, or if the running program executes an
instruction requiring intervention by a central-processor program. At
this point, the controller saves the state of the program and sends a
signal and the appropriate message to the central processor.

The executer is designed such that no program error on the part of
either the user or the translator can cause any memory accesses to be
made outsidé the areas designated as the code and data segments. The
executer essentially executes three types of CRMS APL instructions:
function (call and return) instructions, EEEEE_instructions wvhich push

and pop operands on the stack, and operator instructions which operate

on these operands. All operands are described by a 32-bit descriptor,
where the descriptor is a normalized 32-bit floating-point number, a
2h-bit integer, an 8-bit character, an indirect parameter word, the

so called "undefined" value, or a pointer to an array. An array pointer
locates the data for the array, as well as information which describes
its shape. The instructions check the shapé,of their argument(s) for
legality and then perform the indicated function on all elements of the
argument(s). Such a procedure may involve allocation and/or de-
allocation of array storage. The executer includes a microcoded @ynamic
storage allocator, which utilizes a designated area of the data segment.
Reference counts are maintained on each block of array storage.

Since the large number of APL primitivé functions could not all fit
into the control storage of the APL processor, it was necessary to select
a "base set" of primitive functions which would fit. Other primitive
functions are implemented by the translator as "open" or "closed"
subroutines (APL defined functions) which simulate the desired primitive
functions. The most commonly called functions of typical programs are
included in the chosen base set. Some space has been reserved in the
. control store of the APL processor for the implementation of other
primitive functions which later évaluation might indicate should be
included in the base set. The current base set is listed in Figure 2.
Figure 3 shows some timing figures for execution of primitive functions

both inside and outside the base set.

ASSIGN

ASSIGN INDEXED
ASSIGN NO RESULT
BRANCH
CATENATE
CEILING
CONVERT
DIFFERENCE
EQUAL

FLOOR

FUNCTION CALL
GET ORIGIN
IDENTITY

INDEX

MONADIC IOTA
LESS

LOGICAL PRODUCT
LOGICAL SUM
MAGNITUDE
NEGATIVE

NOT

PRODUCT
QUOTIENT

RAVEL
REFERENCE

_RESHAPE

RETURN FROM FUNCTION
SET ORIGIN

SHAPE

SUPERVISOR CALL
TEST DEFINED

TEST NUMBER

Figure 2.

CRMS APL "Base Set" of microcoded primitive functions

V TIMINGATEST; COUNT; FP; INT; T

(1]
2]
(3]

ful LL:

(sl
(6]
v

Statement [4] of Test Function

LL:
LL:
LL:
LL:
LL:
LL:
LL:
LL:
LL:
LL:
LL:
LL:
LL:

o B B B B B B L e e e B -

IR S S S A

NULL LINE

INT

p INT

FP , INT

INT + INT

FP + FP

INT x INT

FP 3+ FP

FP x FP

INT + . x INT
INT o . x INT
0 ¢ INT

+ / INT

COUNT « 0

INT <« 1 100

FP « INT + 0.1

n TEST STATEMENT
COUNT « COUNT + 1

+ (COUNT < 10000) p LL

Compute Time
for
Statement [4]

.02 MSEC
.07 MSEC
.69 MSEC
.70 MSEC
.97 MSEC
MSEC
7 MSEC
7 MSEC
.1 MSEC
4 MSEC
MSEC
MSEC

OO ODONNNOOOOO
[N

NN

Figure 3.

CRMS APL Timing Experiment

Compute Time
for
Entire Function

1.3 SLC
1.5 SEC
2.0 SEC
8.2 SEC
9.0 SEC
11.0 SEC
22.5 SEC
28.0 SEC
28.0 SEC
82.5 SEC
85.0 SEC
260. SEC
290. SEC

10

APL Runtime Supervisor

The APL Runtime Supervisor (ARS) is a certral-processor program which
provides an interface betweeg APL programs, which run on the APL processor,
and the outside world. It provides a command language by which a user
can create, run, and debug APL programs. In addition, it provides
mechanisms for

(1) creation of multiple processes (parallel tasks) under control

of a single user,

(2) communication and synchronization among these processes,

(3) 1input/output to terminals,

(k) input/output to sequential files stored on disk memory.

A collection of one or more cooperating processes, all created by
a user and executing on behslf of that user, is referred to as an
experiment. Each process consists of a "code segment," which contains
the obJect language of the program, and a "data segment," which contains
all variable information associated with ﬁhe process. In particular,
the data segment includes:

(1) storage for global variable values,

(2) array storage,

(3) a storage stack for local variable values, function call

information, and temporary results,

(4) storage for the current state of the process.

All processes within an experiment share the same code segment, but each
process has a separate data segment; thus each process can be thought of
as a separate parallel execution of the same program. An experiment is

first initiated with a single process. Any process within an experiment

11

may create a new process and start it executing by making a cnll on the
ARS,

Processes may send or receive messages to or from other processes,
terminals, or sequential files through objects implemented by the ARS
called "mailboxes." The processes in an experiment may create any
number of mailboxes. Any process in the experiment may access any mail-
box by calling the ARS. A mailbox contains a first-in-first-out queue
of messages. Each message is a single APL value, i.e., a scalar or an
array of any rank. A process may put (send) a specified value into a
specified mailbox or take (receive) the next message out of a specified
mailbox. If a mailbox is empty when a receive is done, the receiving
process will wait until a message is sent to the mailbox before it
continues execution. A sending process may specify whether it should
wait until the message it sends is received before continuing execution.
These rules provide a general interprocess-synchronization mechanism,

A process may also attach a terminal or>a';equential file to a mailbox
by calling an ARS function. A value sent to such a mailbox is auto-
matically removed from the mailbox and output to the terminal or file.
If a receive is performed on such a meilbox, the next value in the file
or the next value typed at the terminal is received by the process.

This uniform interface provides great flexibility. For example,
an experimenter can substitute a process ("robot" subject) for a terminal
(real subject) without modifying his programs at all.

The opérating environment provided with CRMS APL includes special

facilities for orderly debugging of such systems of parallel processes.

12

utatus

As of January 1973, the hardware for the system was operational.
Now, January 197k, the APﬁ subsystem is oﬁérational and has been used to
develop a prototype experiment. The simulated APL primitive functions,
including mathematical routines, are mostly completed. The current
version of the operating system supports only one experiment at a time.
Preliminary versions of the editing and debugging facilities are available.
Work in progress includes integration and polishing of an easy-to-use
interactive APL subsystem, and design and implementation of a multi-user
time-shared operating system. Completion of the development is scheduled

for summer of 197k,

Acknowledgments

This project is administered by Professor F. E. Balderston, Chairman
of the Center for Research in Management Science, and the Laboratory
Advisory Committee, of whiech Professor A. c. Hoggatt is Chairman. Many
persons have contributed to the technical development, including Paul Gee,
Wiley Greiner, James Harp, Ross Harrower, David Koch, Paul McJones, and

George Morrow.

(1]

(2]

(3]
[4]

(5]

References

Zaks, R., D. Steingart, and J. Moore, "A firmware APL time-sharing
system,”" AFIPS Conference Proceedings, vol. 38 (1971 SJCC), pp. 179-
190.

Denning, Peter J., "Third Generation Computer Systems," Computing
Surveys, vol. 3, no. 4 (Dec. 1971), pp. 175-216.

Iverson, K. E., A Programming Language, Wiley, New York, 1962.

Pakin, Sandra, APL\360 Reference Manual, 24 ed., Science Research
Associates, Chicago, 1972.

Hassit, A., J. W. Lageschulte, and L. E. Lyon, "Implementation of
a High Level Language Machine," Communications of the ACM, vol. 16,
no. 4 (Apr. 1973), pp. 199-212.

Stohr, E. A., "Simulation of Some APL Operators," Research Reports
in Computer Controlled Behavioral Experiments, LR-16, Center for
Research in Management Science, University of California, Berkeley,
February 1971.

