e

SIMPLE LANGUAGE SPECIFICATION

REFERENCE MANUAL

Mark Greenberg

July 26, 1973

Revised September 5, 1973

Center for Research in Management Science

Systems Group
Technical Document

R-1

YT ———

1)
- 2)
3)
L)
5)
6)
7)
8)
9)

0.5 compiler'differences from 1.0

may not re-use name declared as scalar constant

may not use STRING in formal argument list

DESCRIPTOR statement not implemented

array fail actions not implemented

NOT is same precedence as GOTO

FRETURN values not implemented

ANY type not implemented

function calls precedence is Jjust lower than indirection

ENDWHILE not implemented

10.

TABLE OF CONTENTS

Introduction
Character Set
Lexical Structure

3.1 Comments
3.2 Statements
3.3 Primaries

Statement Syntax Notation

Memory
Values
6.1 Scalars
 6.2 Descriptors
Names
T.1 Scope of names
T.2 Interpretation of names
T.3 Types for names
Expressions
8.1 General semantics
8.2 Semantics of operators
Statements
9.1 Block organization
9.2 Executable Statements and labels
Declaration Statements

10.1 SCALAR Statements

10.2 CONSTANT Statements

10.3 VECTOR Statements

10.4 RING Statements

10.5 STRING Statements

10.6 REFERENCE Statements

10.7 DESCRIPTOR Statements

10.8 FIELD Statements

10.9 EQUIVALENCE Statements

10.10 MACRO Statements
11. Function block statements

11.1 FUNCTION Statement

11.2 END Statement
12. Control Blocks

12.1 Conditional Control Blocks

12.2 Tteration Control Blocks
13. Expression Statements
1k, Miscellaneous Statements

14.1 BREAK Statement
Appendix A: Character Codes
Appendix B: Expression Operator Type Rules
Appendix C: Type Semantics
Appendix D: Reserved Words

Appendix E: Constant Expression Evaluation

1. Introduction.

This document provides a complete description of the SIMPLE language.

SIMPLE is a programming language system especially designed to facilitate
the development of large programming systems such as operating systems and
language systems. SIMPLE is not intended to be a general purpose language;
however, its useful application may very well exceed the scope of system

programming.

The SIMPLE language was designed by the author with the help of Charles
Grant, Paul McJones and David Redell. Its design was influenced by the QSPL

language developed for the Berkeley SDS-940 Time-Sharing System.

The SIMPLE language includes the following features:

(1) & complete block structured control mechanism for specifying
iterative and conditional control structures;

(2) convenient methods for accessing and manipulating partial word
values, one dimensional arrays of various element sizes, strings
of characters, and ring buffers;

(3) a character and number oriented input-output facility;

(4) recursive functions;

(5) a token substitution macro-facility.

The SIMPLE language system is a totally integrated, interactive system that
includes a program text editor, a compiler, and a source language level
debugger (seé SIMPLE Interactive Language Systém Reference Manual). Code is
compiled for an instruction processing unit that was designed in parallel
with the SIMPLE language and implemented as a microprogram (called the SIPU)
for the META4 microprocessor (see SIMPLE Instruction Processing Unit Reference
Manual). A collection of standard functions called the SIMPLE Runtime is
provided as part of the integrated language system (see SIMPLE Runtime

Reference Manual).

2. SIMPLE Character Set.

The SIMPLE language character set consists of 65 characters: the 26 letters
A-Z, ten digits p-9, the 27 special characters: |

v "% e () *+, - L/

$ 5 <= > 2@ [\] + <«

blank and carriage return.

All other characters which may exist in a SIMPLE program are ignored by the

SIMPLE compiler in determining the content of a SIMPLE program.

The character codes for the characters are given in Appendix A.

3. SIMPLE Program Lexical Structure.

A SIMPLE program consists of a number of blocks. All blocks are function
blocks which specify a function body except for the first block in the
program which is the global declaration block. Each block is made up of

statements and comments.

3-2

3.1 Comments

A comment begins (1) with an asterisk which is the first non-blank character
following a statément, another comment, or the beginning of the block, or
(2) with a double dot (..) anywhere within a progfém éxcept inside a quoted
string. A comment is terminatéd with a carriage return. The string of
characters in a comment is complétely ignored by thé compiler except that a

comment within a statement serves to delimit primaries.

3.2 Statements

A statement is a string of characters which begins following another state-
ment, a comment or the beginning of the block and ends with a carriage return
- or a semi-colon not enclosed in quotes. A carriage return which terminates

a double dot commént does'égﬁ_end thé statement also. Thus, statement con-
tinuation to the next line can be achieved by ending a line with a double

dot.

The following example contains five comments and two statements.

Example:

* THIS IS A COMMENT
A <« B+C; * ANOTHER COMMENT
F(A, .. COMMENT FOR A
B, .. COMMENT FOR B

C) 3* COMMENT FOR C

‘3.3 Primaries

3-l

The string of characters in a statement is divided into a string of primaries

which may be of several types:

(1)
(2)
(3)
(%)
(5)

names

numbers

character constants -

string constants

operators.

a) A name is any number of alphanumeric or blackslash characters beginning

with a letter or blackslash (only the first 127 characters are relevant, the

rest are ignored).

is also a legal character for a name.

For programs compiled in runtime mode, percent sign ('%')

b) A number is any number of digits optionally followed by a 'B' optionally

followed by another string of digits.

otherwise it is decimal.

The 'B' indicates the number is octal,

The optional string of digits is interpreted as a

decimal number which is a scaling factor indicating the number of octal zeros

to append to the number.

in the following example all have the same value.

Example:

400B
L4B2

256

All constants are truncated to 32 bits.

The numbers

¢) A character constant is any one to four pseudo-characters enclosed in

single quotes.

The value of the character constant is the values of the

pseudo-characters right justified in a 32-bit word, zeros filling in unspecified

characters.

3-5

d) A string constant is any number of pseudo characters enclosed in double

quotes.

A pseudo character is:

(1) any character other than ampersand, carriage return, single quote
or double quote;

(2) An ampersand followed by one to three octal digits. The octal
number truncated to 8 bits defines the value of the pseudo character.
(Example: &155 is a carriage return character.)

(3) An ampersand followed by a letter. The value of the pseudo char-
acter is the code for the letter plus 100B . (Example: &A is
equivélent to &l4l.) This allows easy specification of the control
characters. |

(4) An ampersand followed by any other character. The ampersand serves
as an escape and the following character is taken literally.
(Example: && is a single ampersand.) This allows single quotes
and double quotes to be inserted in character and string constants,

respectively.)

Pl

Carriage reﬁurns are illegal within character or string constants thus pre-
venting runaway compilations when a programmer neglects to insert a closing
quote. Within string constants only, én & will cause all subsequent char-
acters up to and including a carriage return to be ignored. This provides

a method for line continuation within string constants.

e) An operator is any special character other than single quote or double

quote.

4. Statement Syntax Notation.

The syntax of SIMPLE statements will be specified in an extended BNF-like

notation which is now described.

(1)

(2)
(3)
(%)
(5)

(6)

(1)

(8)
(9)

Lower case names are syntactic types. Syntactic type names used

in descriptive text are enclosed in angle brackets for clarity.

‘When the same syntactic type is used more than once in a BNF

statement a number may be appended to the syntactic type so that '

unambiguous references to the syntactic types may be made in the

descriptive text.

Upper case names are literals (such as reserved words).
Characters enclosed in single quotes are literals.

The constfuct [x] indicates that x is optional.

The constrﬁct (x) indicates that exactly 6ne occurrence Of

x must be present. Parentheses are used for grouping.

The construct arb(x) indicates that zero or more occurrences ’

of x may be present.

The construct sep(x, ¥y) indicates that one or more occurrences

of x must be present separated by occurrences of y .
Successive constructs indicate concatenation.

/ 1is used to indicate alternation.

5-1

5. Memory.

A1]1 data which may be referenced from expressions of a SIMPLE program is
stored in the "memory" of the SIMPLE program. Memory is divided into two
parts, variable memory and constant memory. Variable memory is subdivided
. into three kinds:

(1) global memory

(2) 1local memory

(3) external memory.

Constant memory is read-only. It holds the constant space for vectors
initialized at compile time plus the values of all constants used in ex-
pressions. Global memory is allocated at compile time and never'becomeé
de-allocated. Spéce for global. variables, global vectors, and local
vectors are allocated in global memory. Local memory 1s allocated on
function call and deallocated on function return. Local memory is used for
allocation of local variables. External memory is supplied through the
capability machinery by the operating system. Data in external memory may
be accessed with "memory reference expressions" in exactly the same way

that global memory is referenced.

6. Values.

Al]l values manipulated by expressions in SIMPLE programs are of two kinds:

6.1 Scalars

A scalar is a one word (32-bit) value. It is the fundamental unit of infor-
mation manipulated by expressions of a SIMPLE program. Scalars may have a
number of specialized interpretations when used as the operands of certain -
operators.

(1) a scalar used as the right operand of a field tailing operator is
interpreted as a field selector (see SIPU manual for details).

(2) a scalar used inside square brackets of a subscripting operation
is interpreted as a positive integer index.

(3) a scalar used as the operand of a GOTO operator is interpreted as
an instruction address relative to the beginning of the code for
the currently executing function.

(4) a scalar used as the second operand of a ring access operator
is interpreted as a ring selector (see SIPU manual for details).

(5) a scalar used preceding parenthesis in a function call operation
is interpreted as a function identificatién number (see SIPU

manual for details).

Details of the use of scalars are given with the semantic descriptions

of the relevant operators in Section 8.2.

6.2 Descriptors

A descriptor is a two word value. There are two kinds of descriptors.

(1)

(2)

Vector descriptors provide a complete description of a "vector" in

memory. A vector is a linear, contiguous, ordered set of fixed
sized values or "elements" stored in memory. A vector descriptor
specifies

a) The location of the vector in global, constant, or external

- memory.

b) The number of elements in the vector which must be between 1
and 6LK.

c¢) The element size of the vector which may be 8 bits, 16 bits,
or 1 to 127 words.

d) An index origin of one or zero.

e) A two's complement sign extension option for 8 bit, and 16 bit
element sizes (see SIPU manual for details).

Réferénces. A reference specifies the location in memory and the
size of a value stored in memory. The value specified may be any
continuous sub-set of the bits of a single word or any 1 to 127

words (see the SIPU manual for details).

T. Names.

Names are used in SIMPLE to represent various kinds of objects. The meaning

of a name is determined by its declaration. Every name must be declared. A

name may be declared

(1)
(2)
(3)
(%)

in a declaration statement,
when ﬁsed as a label'beginning a statement,
when used as the control variable of an iteration control block, or

in a FUNCTION statement.

o

T.1 Scope of names

Every name has a scope which limits the context in which thé declared meaning
of a name is valid. A name may have global or local scope. A name is global
if it is declared in the global declaration block or if it is the name de-
clared as a function in a FUNCTION statement. Also, there are a number of
reserved words (see Appendix D) which are pre-declared and have global scope.
Furthermore, the global naﬁes of the runtime are also global to the user
program. All other declarations are within some function block. The scope
of such names is local and their declared meaning is valid only in the

function block in which they are declared.

A particular name may be declared in any number of blocks. If declared in
several function blocks, the name will have a different meaning in each
function block. If a name is declared in both a function block and the
global declaration block, then within the function block the locally de-
clared meaning prevails. Names declared glpbally as macros cannot be rede;
clared locally. It is a program error to redeclare a reserved word name.

It is also a program error if a name used within a function block is not de-

clared globally or declared within the function block.

In general, a name declared within a block may not be redeclared within the
same block. However, names declared as scalar constants may be redeclared

an arbitrary number of times as scalar constants with different values using
the CONSTANT declaration statementf The value used in a particular reference
to the name will be that specified in-the textually preceding declaration of

the name.

T.2 Interpretation of names

Naﬁes may be declared to represent one of several kinds of objects

(1) operators

(2) macros

(3) wvalues in memory.
All operators are pre-declared reserved words and are used in the same contexts
as special characters. (Examples: AND, IF, FUNCTION.) See Aépendix D for

complete list.

Macros provide a method by which use of a name declared as a macro can be
viewed as equivalent to an arbitrary string of primaries. Macros are

discussed in greater detail elsewhere.

Memory value names provide a symbolic way of referring to values in memory.

These names can refer to values in constant memory or variable memory and are
said to be declared as constants or variables, respectively. Names declared
as constants must have initial values specified in their declarations whereas

names declared as variables may not.

-4

T.3 Types for names

Names for values in memory have a type.associated with them; scalar, vector,
reference, descriptor or any. This type is specified when the name is declared.
Names declared as type vector, reference, or descriptor can also have assoc-
iated with them one additional level of type specification which indicates

the type of the elements in memory to which the descriptor refers. Scalar
names declared in FIELD statements can also have a type specification for

the field referenced by the field selector. The type of an element in memory

is specified with a <type> construct which is interpreted as follows:

word type
SCALAR scalar
VECTOR vector
RING vector
REFERENCE reference
STRING reference
DESCRIPTOR descriptor
ANY any

8-1

8. Expressions

Syntax:

expression ‘ = sep(whéré, '%')

where = conditional [WHERE conditionall

conditional = IF or (DO / THEN) or [ELSE conditional] / or

or = sep(and, OR) |

and = sep(not, AND)

not = [NOT] relational

relational =rem [('=' / "#' / '>' [/ '>=' ['<' ['<=') rem]

rem ' = sep(addition,.REM)

addition = sep(multiplication, ('+' / '='))

multiplication = sep (unary, ('#' / '/' / CYCLE / SHIFT))

unary = return / exit / sign

return = (RETURN / SRETURN / FRETURN) [conditionall]

exit = EXIT [name]

sign = ['+" / '-' / GOTO] assignment

assignment = indirection ['«' conditionall]

indirection = arb('$' / '@') tailing

tailing = sep(bottom, ('$* / '." / '@'))

bottom = logical / absolute / code / ringaccess / functioncall /
subscripting

logical = (AND / OR / EOR) '(' expression ',' expression')'

absolute = ABS '(' expression ')'

code = CODE '(' initlist ')’

ringaccess

functioncall
actuals
failure
subscripting
primary

failaction

(FRONT / REAR / GETF / GETR / PUTF / PUTR)

'(' expression [',' expression] [failaction] ')'
primary '(' [actuals] [failure] ')
sép(eipression, AR

v [namé '7* 1 [expressioni]

primary arb('[’ eipression [failaction] ']')

(e éxpression ')' / constant / variable

f:' expression

8.1 General Semantics

8.1.1 Definition.

The term "expression" is uséd in this manual to mean any sequence of operands
and operators which conform to the statéd syntax and semantic rules for
expressions. Thus, any operand of some operator is itéelf an expression and

a sub-expression of a larger expression.

8.1.2 Syntax.

Two types of syntactic constructs are used to associate an operator with its

operand(s): infix syntax and fuﬁction syntax. For example:

X+X infix syntax

AND(X, Y) function syntax

In particular, the bitwise logical and ring access operators use function
syntax while most others use infix syntax. In addition, the function call
and square brackets, respectively, immediately following a <primary>. For

example:

F(a) function call

v[I] _vector subscripting

8.1.3 Simple and complex expressions.

Every expression is either "simple" meaning it has no operator or else it is
complex and has a "principle operator" which is the operator of lowest
precedence in the outermost level of parenthesis or square bracket nesting.

For example, the '¥' is the principle operator in the following expression:
(A + B) * V[I]

If an expression is simple then it consists of a single variable name or a

single constant, optionally enclosed by any number of balanced parentheses.

8.1.4 Associativity.

Operators of the same precedence are left associative. For example, the

following two expressions are equivalent:

A+B-C

(A+B) -cC
However, the assignment operator ('<') is right associative.

8.1.5 Order of evaluation.

Every complex expression evaluates its principle operator last after
evaluating thé operands of the principle operator. This rule recursively
applied to the operands of the principle operator as sub-expressions specifies

the order of evaluation of an expression.

Note that for most binary operators (exceptions specified in operator
semantics) the order in which the operands are evaluated is unspecified.
Note also that certain operators (e.g., boolean AND) supress evaluation of

one operand conditionaily on the evaluation of the other.

8.1.6 Memory reference expressions.

A "memory reference expression" is an expression which refers to a value in

the memory of a SIMPLE program. A memory reference expression is either a

simple variable or a complex expression which satisfies one of the following

conditions:

a.

b.

prihciple operator is '.' field tailing,

principle opérator is '$' field tailing, and left operand of
'$' is a memory reference expression,

principle operator is vector subscripting ([]) ,

principle operator is indirection ('$') .

principle operator is a ring access operator

(FRONT, REAR, GETF, GETR, PUTF, PUTR)

8.1.7 Constant expressions.

A "constant expression" is either a simple constant or a complex expression

satisfying both the following rules:

a.

all operands of the principle operator are theméelves constant
expressions,
the principle operator can be evaluated as a constant according to

the rules in Appendix E.

8.1.8 Result of evaluation.

Every expression when evaluated yields a "result;" A result has a number
of attributes:

a. a value,

b. a value size,

c. a type, and

d. a reference (for memory reference expressions only).
Some operators (e.g., FOR, GOTO) yield unspecified results when evaluated.
Memory reference expressions include a reference as part of the result
which is used instead of the value in cértain contexts such as the left

operand of an assignment operator.

Result type.

. Evaluation of an expression yields a result with one of the following types:

a. scalar,

b. vector,

c. reference.
In édditién, a result may be of one of two composite types. A result is of
type "descriptor" if it is of type vector or of type reference, and thus,
is legal in any context where an operand of type vector or reference is
required and is interpfeted semantically exactly as if it were of the
required type. A result is of type "any" if it is of type scalar or vector
or reference, and thus is legal in any context and is interpreted semantically
exactly as if it is of the required type (eXceptions of this rule are specifi-

cally noted for the assignment and function argument passing operations).

The specification of a type attribute of a result serves two distinct

semantic purposes:

8-
. a. Type attributes are used to determine of one or two word values are
to be copied by the assignment operator and during passing of function
arguments. Details are discussed with the semantics of these operationms.
b. Type attributes are used to test the validity of the operand(s) of an
operator at compile time. The detailed rules of type validity checking
for the operators is given in Appendii B.
The type maehinery is not totally effective since types can be associated with
values in memory to only one level of referencing and it is possible to con-
struct expressions that have more than one level of referencing, e.g., A[I] [J].
Such expressions will evaluate to a result of type any and therefore improper

-uses of that expression may go unchecked.

Result value size.

A result value has a size which is specified as one or more words; The
following rules must be observed for valid expression construction:
a. A result of size one word must be type scalar, or type any.
b. A result of type vector, reference or descriptor must be of size |
two words.
c. Sizes greater than two words can occur only as the result of memory
reference expressions. Such results are referred to as "multi-words."
A multi—wo;d result can be legally used only as the left operand of a
'$"field tailing operator or as the operand of an '@' reference operator.
Only the reference of a multi-word result can be used, never the. value.
If an element in memory, less than 32 bits in size, is evaluated with a memory
reference expression then the result is extended to one word with the elemert
value right justified. The part-word element value may be two's complement
sign extended when evaluated if the sign extended option is specified in the

vector descriptor, reference, or field selector.

8.1.9 Scalar Operators.

Most éf the operators in SIMPLE éxpréssions are "scalar operators." A
scalar operator when evaluatéd genératés a résult of type scélar. A1l thé
operands of a scalar opérator must be of type scalar. If the result type
of an operand is type any thén the result of that opérand is used in

evaluating the scalar operator as if it were of type scalar.

8.1.10 Evaluation of variables.

A simple expression which consists solely of a name declared as a variable
is evaluated as follows. The résult type is the type spécified in the
declaration of the name. The resuit valué is the valué of the variable in
memory at the time of e&aluation. Thé result size is two words for a vari-
able of type vector, référénce, or descriptor and one wqrd otherwise. The

result reference is to the variable in memory.

8.1.11 Evaluation of constants.
A constant in a simple expression may be one of the following:
a. A number, in which gasé the result is Qf type scalar, and size one
word, with value specified by the number.
b. A string constant in which casé the result is of type reference
and size two words, the value being a reference to a three word
string descfiptor for a vector of 8-bit elements which is allocated
and initialized with the characters of the string constant in
constant memory.
c. A name declared to be a constant in which case the result value and
type are those specified in the declaration of the name.
d. A character constant in which case the result is of type scalar with

value specified by the character constant.

8.1.12 Semantics.
The semantics of all the operators are listed in Section 8.2 in order of
precedence or binding strength, the lowest precedence (most loosely bound)

operator first. Operators of the same precedence are listed together.

8-10

8.2 Semantics of Operators

& causes successive evaluation. The left operand is evaluated and
then the right operand. The result is the result of the right
operand.

Example: X <« Y & GOTO L

WHERE is similar to '&' but causes evaluation of the right operand before
the left operand. The result is the result of the left operand.
It may not be iterated.

Example: F(X, Y) WHERE X <« 1

IF
THEN DO
EISE

8-11

specify conditional evaluation. These operators may appear in thé_

_ general form

IF ekpri THEN expr2 [ELSE expr3]
DO may be used in place of THEN. exprl, which must be of type
scalar, is evaluatéd and if ité result value is true (odd), then
eipr2 is évaluated and its résult becomes the result of the IF
operator. Otherwise, expr3, if present, is evaluated and becomes
the result value. If expr3 (which may include another IF operator)
is not presént, thén the ELSE value is unspecified. The result
type of the THEN aﬁd ELSE operands is specified in Appendix C.
Only if an IF operation result is used as an opérand of a larger
éxpression can a typé check occur. ZExamples:

SCALAR S, T, X

" VECTOR V, D

T « (IF X THEN S ELSE D) illegal, THEN and ELSE
' types don't match
IJF XTHEN V<« DELSE T « S OK
T « (IF X THEN S) illegal, ELSE value
undefined
IJFXTHEN T « S OK
T « (IF THEN S ELSE GOTO L) 0K, GOTO result cannot

be used

OR

AND

8-12

is the assignment operator. It has the same precedence as

the indirection operator ('$') for its left oéerand and ranks just
below IF for its right operand. The right operand is evaluated,
and its resultlvalue becomes the result value of the assignment
operation, and also becomes the value of the element in memory
specified by the result reference of the left operand. The left
operand must be a memory reference expression which references
variable memory. If the element size specified by the left operand
is a partial word of n bits then only the right n bits of the 32
bit right operand result value are stored in memory. The table in
Appendix C details the result type and number of words of value
stored for the assignment operation as a function of the types of
the left and right operands. Note that if both operands are of

type any then only 1 word is stored, that is the operands are

assumed to be scalar.

is the Boolean or . It is a scalar operator. The result value

is 1 if either operand is true; otherwise, the result value is

"f$. The right operand is not evaluated if the left operand is true.

Example: L4 < 5 OR F(X) result: 1

F(X) not evaluated

is the Boolean and . It is a scalar operator. The result value
is 1 if both the operands are true; otherwise, the result value
is @ . The right operand is not evaluated if the left operand is
false.

Example: 8 < 6 OR F(X) result: @

F(X) not evaluated

8-13

NOT is the Boolean not.. It is a scalar operator. Its result value is

1 1if its evaluated operand is false, otherwise its result value

is 6.

= # are the relations equal to, not equal to, less than, not greater

< <=

> >= than, greater than, not less than, respectively. They are scalar
opérators. Each relational operator evaluates its operands and
then performs the test. If the relation is true, then the result
value is 1 ; otherwise, the result value is g .

REM computes the mathematical remainder after division. It is a
scalar operator. The magnitude of A REM B is |A| modulo [B| .
‘The sign of the result is the sign of B .

+ perform 32-bit two's complement integer addition and subtraction,
respectively. They are scalar operators.

* / '#¥' and '/' perform 32-bit two's complement integer multiplica-

SHIFT

CYCLE tion and division, respectively. SHIFT shifts the 32 bits of

the left operand the number of places indicated by the two's
complement right operand. A positive right operand specifies a
right shift and a negative left shift. Vacated bits are replaced
by zeros. CYCLE is the same but performs 32-bit cyclic shifts;
that is, the bits that spill off one end are shifted in at the

other end. All these operators are scalar operaotrs.

GOTO
RETURN
SRETURN
FRETURN
EXIT

8-1L

are the unary operators. Unary '+' is ignored. Unary '-' |is

a scalar operator and computés the two's complement of its operand.
GOTO interprets thé value of its operand as an instruction address
within the current function Body. Control is transferred to this
address. In général, to bé méaningful, thé value of the operand
should be thé value of a label.' The opérand must be of type scalar.
Only memory reference éxpressions are legal operands to a GOTO
operator.

Examples: GOTO L (where L isa label)

GOTO DISP[I] (where DISP is a vector whose
elements have been initialized to the
values of labels)

RETURN , SRETURN , and FRETURN cause control to return to the
calling function from the current function. A function may return
a single value and a predicacy condition (success or failure).
Normally, the single operand, if present, is evaluated and becomes
the return value. If not pfesent, then the return value is unde-
fined. RETURN and SRETURN specify return with a success-
predicacy condition. The table in Appendix C indicates which
combinations of operand type and return type specified in the
function head are illegal for SRETURN and RETURN . FRETURN
spécifies return with a failure-predicacy condition. The operand

of FRETURN must be of type scalar.

8-15

EXIT specifies control to leave the current control block. If
the single argument, which must be a label name, is present, then
control is transferred to the statement following the last state-
ment of the control block labélled. by the operand. A control
block is named by a label on the IF , FOR , or WHILE statement
which begins the control block. It is a program error if the

EXIT operator is not textually enclosed within the specified
control blo;k. If the operand of the EXIT operator is not
present, then the innermost control block is exited. It is a pro-

gram error if there is no enclosing control block.

Unary '$' is the indirection operator. Its single operand must
be of type reference.- The result value is the value in memory
‘described by the réference. If specified in the reference, partial
word values are sign extended. The result size is the same size
specified by the reference. A runtime error occurs if indirection
is applied to a reference to a multi-word value. If the operand

is a simple name declared as a reference, then the result type is
the type specified in the name declaration, otherwise the result

is of typé any. The résﬁlt reference is jﬁst the operana résult
value. Unary '@' is the reference operator. Its operand must

be a memory reference expression. vThe result type is reference

and its two-word result value is a reference to the value in memory

indicated by the operand.

Warning! References to local values will not remain valid after

a return to the calling function.

8-16

Binary '$' , '.' and '@' are the field access or tailing
operators. For these operators, the right operand must be of type
scalar and is interpreted as a field selector. For the '.'
operator, the left operand, which must be of type reference, spec-
ifies the location in memory of a value. For the '$' operator,
the left operand is a value which may be of any size or type. For:
both '.' and '$' the result value is the value of the field
selected by the field selector of the value specified by the left
operand. If specified in the field selector, partial word fields
are sign extended. A runtime error occurs if the selected field
is not within the value; e.g., the displacement is greater than
the size of the value. The result size is the size of the selected
field. If the right operand is a simple name declared in a FIELD

statement then the result type is the type specified in the name

declaration, otherwise the result is of type any. The result

reference is to the field in memory specified by the field refer-

ence operation.

For the '@{ operator, the left operand must be a value of type
scalar. The result value is constructed by placing the value of
the left operand into the selected fieid, i.e., the result value
of V@TF is the value of T after (T < P 3 T$F <« V). The result
is of type scalar. The selected field must have size not greater

than one word.

t]

8-17

specify the vector subscripting operation. Only one dimensional
subscripting is allowed. The operand preceding the square brackets
must be of type vector and describes a vector in memory. The oper-
and enclosed in the square brackets is the subscript (or index) and
specifies the element within the vector to be referenced. Vector
elements are numbered starting with zero or one depending on the

lower bound field in the vector descriptors. If the subscript is

out of bounds, then a failure action is pérforméd according to the
rules given with the function call sémantics. The result value is
the value of the specified vector element. If specified in the
descriptor, the value from a partial-word element sign is extended.
The result size is the element size specified in the vector de-
scriptor. If thé véctor operand is & simple name declared as a
vector, then the result type is‘the element type specified in the
name declaration, otherwise the result is of type any. The resuit

reference is to the selected element of the vector.

()

8-18

when immédiately preceded by an operand, specify a function call.
The preceding operand specifies the function to be called. Typ-
ically, this operand will be a function name (the value of a
function name is the function's identification number); however,

it may be any memory reference expression of type scalar. In gen-
eral, to be meaningful, the value of the operand should be obtained

from the value of a function name.

Arguments.

Inside the parentheses may be specified a list of actual argument
expressions separated by commas. The number and types of the actual
arguments must match the numbér and types of the formal arguments

of the function to be called. If the function to be called is
specifiéd by its function namé, then actual arguments may be ommitted
from the actual argumént list if default values for the corresponding
formal arguments are specified in the FUNCTION statement of the
function to be called. The effect is exactly the same as if the

default value were inserted directly into the actual argument list.

Example: If F has six formal arguwents, then in the call
F(, X,, Y)
the first, third, fifth, and sixth actual arguments are
omitted and default values for the corresponding formal

arguments must be specified.

8-19

All arguments are passed by»value; thus, the value of each actual
argument expression is assigned as the value of the corresponding
formal argument. For each pair of corresponding actual and formal
arguments the table in Appendix C indicates the legality of the

argument and the number of words of value copied as the argument

is passed.

8-20

Failure Action.

If a function call returns a failure predicacy (or if a subscripting
or ring access operation fails) a failure action is performed. The
fail action performed is determined from the <failure> or <fail-
action> clause specified with the failing operator according to
thé following rules:

1) If no <failure> or <failaction> is present (i.e., no
colon), then a runtime trap occurs.

Example: F(X)

2) 1If only the colon is present then execution will continue
as if the operation had succeeded. However, the result
will be unspecified.

Example: IF X=¢ THEN GETF(S:)

3) 1If a square-bracketed name (which must be a variable) is
present following the colon (may be present only for
function calls), then the failure return value of the
function call is stored in the specified variable.
Example: F(X:[T])

4) If an <expression> is present after the colon, then the
expression is evaluated and its result becomes the result
of the operation. If a square-bracketed name is also
present, then the failure value store is performed before
the expression is evaluated.

Example: F(X: [T]G(T))

A[I: FRETURN]

FRONT
REAR
GETF
GETR
PUTF
PUTR

8-21

are the ring aécess operators. They use function syntax. The
first operand must be of typ¢ vector, and specifies a vector
descriptor for the ring to be accessed. The second operand must
be of type scalar and specifies the ring selector for the ring
access operation. If the second operand is omitted, then the
first operand must be a simple name and that name with 'PTR'
appended is taken to be the name of the ring selector. If present,
the second operand may be any expression for FRONT or REAR but
must be a simple variable name for GETF, GETR, PUTF, of PUTR .

If the ring access operation fails, then a failaction is performed
according to the rules given with the function call semantics.

All six ring operators will fail if either pointer in the ring
selector is out of bounds of the vector to be accessed. FRONT,
REAR, GETF, and GETR will fail if the ring selector indicates an
empty ring. PUTF and PUTR will fail if the ring selector
indicates a full ring. PUTF and PUTR may only be used as the
principal operator of the left operand of an assignment operator.
GETF and GETR ma& be used in any conﬁext except as the principle
operator of the left operand of an assignment operator. The result
value for FRONT and GETF is the firét element in the rihg‘and

for REAR and GETR it is the last element in the ring. GETF and
GETR have the side effect of updating the ring selector to |
remove the referencéd élemént from the ring. PUTF and PUTR

have no result value and yiéld as résult reférence the element
Just before thé front ring elemént or just after the rear ring
element, respectively, updating thé ring selector to include the

referenced element. For all six ring access operators, the

8-22

result size is the element size from the vector descriptor. If
the.first operand is a simplé name déclared as a vector, then the
result type is thé type specified in the name declaration, other-
wise, the result is of type any. The result reference for FRONT,
REAR, GETF, and GETR is to thé element referénced at the front

or rear of the ring.

AND when used in function syntax specify the bitwise logical operators.
OR
EOR They are scalar operators. The result value for AND is the end

of the corresponding bits of the operands, for OR it is the

bitwise inclusive or, and for EOR it is the bitwise exclusive or.

ABS give as a result value the sbsolute value of its operand interpreted

as a 32 bit two's complement number. It is a scalar operator.

CODE can take one or more operands. The operands must all be constant
expressions of type scalar. The value of the operands is compiled
as consecutive instructions in the object code of the program.

Thus operator makes it possible to explicitly specify values to be-
stored in the code segment and makes it possible to compile code

that cannot be generated in any other way in SIMPLE.

9. Statements.

Syntéx:

statement = scalarstat / vectorstat / constantstat / ringstat /
macrostat / referencestat / descriptorstat /
equivalencestat / stringstat / fieldstat / functionstat /

" endstat [/ execstat

Statements are of five types:

(1) declaration statements
SCALAR, CONSTANT, VECTOR, RING, MACRO, DESCRIPTOR, STRING,
REFERENCE, FIELD, EQUIVALENCE

(2) function block statements
FUNCTION, END

(3) control block statements
IF, ELSEIF, ELSE, ENDIF, FOR, WHILE, ENDFOR, ENDWHILE

(4) expression statements

(5) miscellaneous statements

BREAK

The control block, expression, and miscellaneous statements are collectively

referred to as executable statements.

9.1 Block Organization

A function block must begin with a FUNCTION statement; any block may optionally
end with an END statement. The body of the function follows the FUNCTION
statement. All declaration statements must textually precede all executable

statements in the function body.

The global declaration block must consist entirely of declaration statements.

9.2 Executable Statements and TLabels

Syntax:
execstat = arb(name':') [ifstat / elseifstat / elsestat / endifstat /
forstat / whilestat / endforstat / endwhilestat / breakstat /

expressionstat]

An arbitrary number of label names may be specified at the beginning of
any executable statement. ‘A label is not legal on a declaration statement
- or a function block statement. A name specified as a label is declared

as a scalar constant local to the current function block. The value of
the constant is the function base relative instruction address of the

first instruction in the current statement.

Unlike all other names in SIMPLE, except function names, label names

may be used in statements before they are declared. It is a program error
if an undeclared name is used and not subsequently declared as a label
within the function block. Furthermore, it is not legal to declare a
name as a label if it is globally declared. A label name may be used

in the following cases:

(1) In any executable statement (except an operand of CODE operator)
in any context where a scalar constant is legal.

(2) In initialization lists for VECTOR, RING and STRING declara-
tions and as the operand of an operatqr.ﬂVIn these cases,. the
label name must be used either as a simple expression or as the
left operand of an '@' field tailing operator. In this latter
case, (which is a kludge feature to facilitate table construction)

the field selector must specify a 16 bit field that lines up on

9-3

the half-word boundary and the bits specified by the field must
not be modified by any ot_hér' operator in the expression.
(3) As the operand of an EXIT operator.
Examples:
L1: A<« B

L2:L3: GOTO Lk

10-1

10.1 SCALAR Statements

Syntax:

scalarstat = SCALAR sep(vardec, ',')

vérdec = name [TO type]

A SCALAR statement specifiés a list of names to be déclared as variables of
type scalar. The <type>, if present, specifiés the type of fields accessed\
if the name is used as a field selector in a field tailing operation.
Example:

SCALAR A, B, C, TO VECTOR

10.2 CONSTANT Statement

Syntax:
constantstat = CONSTANT sep(condec, ',')

condec = name '<' conditional

A CONSTANT statement specifiés a list of names to be declared as scalar

constants. The right hand sidé of éach lef£ arrow must be a constant

expréssion which specifies the value for the declared constant name.
Example:

CONSTANT X+«3, Y<X+T

10-2

10.3 VECTOR Statement

Syntax:

vectorstat = VECTOR vecdec

vecdec = name [vecspec] ['«' initlist / ',' vecdec]

vecspee = '[' [vecdesc] [type] ']’

vecdesc = conditionall [SIGNED] [ONE\BASED] [EXTERNAL conditonal]
[conditional2 (WORD/BIT)]

type = SCALAR / VECTOR / REFERENCE / DESCRIPTOR / RING / STRING / ANY
SCALARS / VECTORS / REFERENCES / DESCRIPTORS / RINGS / STRINGS / ANYS

initlist = sep(conditional, ',')

A VECTOR statement specifies a list of names to be declared as type vector.

Furthermore, for each name the following information may be specified:

(1)
(2)
(3)

(%)

a vector descriptor for the wvector,
space to be allocated for the vector,
initial values for the vector elements,

a type for the vector elements.

Syntactically, each name declared may be optionally followed by a specifi-

cation enclosed in square brackets (<vecspec>) and the last name in the

list may be optionally followed by an initialization list (<initlists).

Inside the square brackets may be specified vector descriptor information

(<vecdesc>) and a vector element type (<type>).

Element type specification.

If present, (<type>) specifies the type of the values stored in the vector.

If not present then SCALARS is assumed (note exception below if initialization

list is present).

10-3

Variable vector specification.

If neither the vector descriptor information nor the initialization list is
present, then the name is declared as a variable and no space is allocated
for the vector. In this case, vector space allocation and descriptor set-up

must be done by the program at runtime.

Vector descriptor specification.

If the vector descriptor information (<vecdesc>) is present, then the name
is declared as a constant of type vector and space is allocated for the
vector. The <conditional> expressions must be constant, <conditionall>
specifying the vector size in elements and <conditional2> the element size.
Legal element sizes are 8-BIT, 16-BIT and x—WQRD where x is in the range

1 to 127. If no element size is specified, then one word elements are
assumed if the vector elements are of type scalar and 2-word elements are
assumed if the vector elements are of type reference, or vector. Further-
more, if the element type is vector or reference, then the element size, if
present, must be 2 words. If SIGNED is present, then partial word elements
when fetched will be sign extended to 32-bit values. Otherwise, the high
order bits are zero. If ONE\BASED is present then indices in the vector

begin at one instead of zero.

External vector specification.

If the EXTERNAL clause is present in the vector descriptor information then
the name is declared as a vector constant for an external segment vector.

The expression after EXTERNAL, which must be constant in the range @-1T7T7T7B,
specifies the capability number. The base address is taken to be zero.

External vectors may not be initialized.

10-X

Vector of initialization.

If the initialization list is present then vector storage for the vector
is allocated as constant. Default values for vector size (number of elements),
vector element size, and vector element type are provided if these specifica-
tions are not present according to which form of initialization list is
present. If a vector element size and/or a vector element type is present
fhen it must match the corrésponding default size or type for the specified
form of initialization list. Initialization lists may be in one of four
forms:
(1) A 1ist of constant eipressipns of typé gcalar. The
successive values in the list specify the values of
successive elements of the coﬁstant vector. If no vector
size is specified, then the default size matches the length
Aof‘the initialization list. If a vector size is specified,
then it must be at least as big as the list length. The
remaining values will be initialized to zero. The
element size, if present, must not be larger than one word.
The element type, if present, must be scalar. The default vector
element size and vector element type are one word and scalar,

respectively.

(2) A 1ist of expressions of type vector. The successive
vector elements are initialized to the vector descriptors
specified in the initialization list. The list elements
must be previously declared names of type vector constant.
The vector size, if present, must exactly match the length
of the initialization list. The element size, if present,

must be 2 words. The element type, if present, must be

10-5

vector. The default values for vector element size and
vector element type are 2 word and vector, respectively.
(3) A list of constant expressions of type reference. The

successive vector elements are initialized to the references

specified in the initialization list. The vector size,
if pfesent, must exactly match the length of the initial-
ization list. The list elements must be string constants
or names previously declared in a STRING statement. The
element size, if present, must be 2 words and the element
type if present, must be reference. The default values for
vector element size and vector element type are 2 word and
vector respectively. |
(4) A single string constant. The succeséive vector elements

are.initialized to the character code values for the
successive characters of the string constant. The vector
size, if present, must exactly match the size of the string
constant. The element size, if present, must be 8 bits.
The element type, if present, must be scalar. The default
values for vector element size and vector element type
are 8 bit and scalar, respectively.
Example:

VECTOR A,B[7], c[128 2 WORD VECTORS]

VECTOR D[6 16 BIT] « @, 1, 2, 3, 4, 5

VECTOR S <« "ABCDEF"

10.4 RING Statement

Syntax:

ring =

The syntax and semantics of a RING statement are identical to a

VECTOR

RING vecdec

statement except that:

(1) an extra element is allocated in the space for

(2)

the ring, since a "full" ring actually has oné
unused element (see SIPU manual), and;

for each name in a RING statement, a scalar

name is declared with a name which appends 'PTR'
to the vector name. This scalar name is intended
for use as the selector for ring access operations.
The selector name is declared as a constant if

aﬁ initialization list is specified for the name,
the value of the constant being a selector for

all the elements in the ring. A variable selector

is declared if no initialization list is present.

10-6

10-7

10.5 STRING Statement

Syntax:

stringstat = STRING vecdec

A STRING statement specifies a list of names to be declared as constants
of type reference. The constant reference value is to a three word value
which is interpreted as a "string descriptor."” The first two words of a
string descriptor are a vector descriptor for the string and the third
word is a ring selector. The syntax for STRING statements is exactly
the same as VECTOR statements. The rules for vector descriptor specifi-
cation, vector initialization, and vector element type specification are
exactly the same as for VECTOR statements except that an extra element is

always added to the vector size and that the default element size is 8 bits.

The string descriptor is allocated and initialized according to the
following rules:
(1) If no vector descriptor information (<vecdesc>) and
no initilization list is present then an uninitialized
3 word string descriptor is allocated in global memory.
(2) If only the (<vecdesc>) is present (no initialization
list) then a 3 word string descriptor is éllocatéd in
global memory and the first two words.are initialized
to a vector descriptor for a vector allocated in global
memory. The ring selector word is not initialized.
(3) If an initialization list is pPresent, then a 3 word
string descriptor is allocated in constant memory.

The . first two words are initialized to a vector

10-8

descriptor for the vector initialized in constant
memory and the third word is initialized to a ring

selector for all of the constant vector.

10.6 REFERENCE Statement

Syntax:

referencestat = REFERENCE sep(vardéc,)

The REFERENCE statement specifiés é list of names to be declared as

variable values of type réferencé. If present, <type> specifies the type

of value the reference locates. If not present, type scalar is assumed.
Example:

REFERENCE X, Y TO VECTOR, Z

10.7 DESCRIPTOR Statement
Syntax:

descriptorstat = DESCRIPTOR spe(vardec, ',')

The DESCRIPTOR statement specifies a list of names to be declared as
variables of type déscriptor, i.e., type reference or type vector simultane-
ously. If present, <type> specifies the type of values accessed through
the vector descriptor or reference. If not present, then type scalar is

assumed.

10-9

10.8 FIELD Statement

Syntax:
fieldstat = FIELD sep(fldspec, ',')
fldspec = name ‘(' [SIGNED] conditionall [':' conditional2 ',

conditional3 / THRU conditional] [TO type] ')’

A FIELD statement specifies a list of names to be declared as scalar
constants and initialized as field selectors. The three <conditional>
expressions must be constant. The <conditionall> specifies a displacement.
The <conditional?> and <conditional3>, if present, specify the left
and right bits of the partial word field inclusive. The expression after
THRU , if present specifies the displacement of the last word of a
multi-word field. If only one expression is present, a full word field
is assumed. The high order bit of a scalar is bit @ and the low order
bit is bit 31. If present the <type> specifies the type of value accessed
by the field selector. If the specified type is for vectors or references
then the specified selector must be for a two word field. If the <type>
is not present then type scélar is assuméd.

Example:

FIELD F(3), G($:17, 31), H(2 THRU k)

10-10

10.9 EQUIVALENCE Statement

Syntax:
equivalencestat = EQUIVALENCE sep(eqvdec, ',')
eqvdec = name '=' name '[' conditional ']!

An EQUIVALENCE statement specifies a list of names which are to be
declared as equivalent to the values specified on the right hand side
of the equal signs. The right hand side specifies an element of a
vector. The right hand name must be previously declared as a vector
with space allocated iﬁ global memory and with element size of one or
two words. The name will be declared with the same type as the values
in the vector elements. The <conditional> inside the square brackets

must be a constant expression which specifies the index of the vector element.

10-11

10.10 MACRO Statement

Syntax:
macrostat = MACRO name ['(' [dummylist] ')'] '<' macrobody
dummylist = sep(name, ',')

The MACRO statement specifies the definition of the macro being declared.
The <macrobody> may be any arbitrary string of primaries up to but not inclﬁd—
ing the statement terminating semi-colon or carriage return. An exclamation
point (!) within a <macrobody> is identical to a semi-colon except that it
does not terminate the macro definition. This allows macro definitions that
expand into several statements. Macro calls within a macro definition body
are not expanded at definition time but at call time. The <dummylist> , if
present, specifies a list of names which, when used within the macro body,
éerve to mark the places where the actual arguments of a macro call should
be substitufed. The use of a name as a dummy argument in no way interferes
with any other use of the same name within a SIMPLE program. h
' Examples: .
MACRO DOUBLE(XX) < (XX)¥2

MACRO ERROR (XX) « (EFUNC(XX) & FRETURN)

Macro Calls

Syntax:
macrocall = name [actuallist]
actuallist = '('[sep(actualargument, ',')]"')’

A macro call occurs when a name previously declared as a macro occurs any-
where within a statement. If the macro is defined with a <dummylist>,

then the call must include an <actuallist> and the number of actual arguments

10-12

must exactly match the number of dummy arguments. An actual argument is

any string of primaries balanced with respect to parentheses, not containing
a semi-colon or carriage return primary, and delimited by a comma or a
colon not enclosed in inner parentheses. The effect of the macro call is
that the macro body, with actual arguments substituted for dummy arguments,
replaces the macro call in the statement. Macro calls are expanded in a
strictly left to right scan of the statement. After a macro call, the

scan continues with the first primary of the substituted definition.

Note that substitution is done by primaries. Arbitrary string substitution

is not possible.

11-1

11. Function Block Statements

11.1 FUNCTION Statement

Syntax:

functionstat = FUNCTION name '([formallist] ')' [RETURNING type]
formallist = sep(formal, ',')

formal = [type] name [TO type] [':' conditionall]

A TFUNCTION statement must be the first statement of a function block. It
specifies the function name, the type of value the function returns, if
successful, and a list of formal arguments. The function name specified is
declared as a global, scalar constant with a value called the function number
which is different from all other function numbers. If the RETURNING

clause is present, then the <type> specifies the type of value returned

by the function on success return (default type is scalar). Fail return
values are always of type scalar. Each name in the formal argument list is
declared as a local variable with type specified by the prededing - <type>
(default type is scalar). The TO clause, if present, specifies the type

of value referenced in memory if the formal argument is used as a vector
descriptor, reference, or field selector (default type is scalar). If present,
the <conditional> after the colon, which must be a constant expression,
specifies a default value to be assigned to the formal argument (which must
be of type scalar) if no actual argument is provided in a fuhction call.

Example:

FUNCTION F(X, Y:1, VECTOR Z TO RINGS) RETURNING REFERENCES

11-2

11.2 END Statement

Syntax:

endstat = END

The END statement may be optionally used as the last statement of a global

declaration or function block

12-1

12. Control Blocks

Control blocks allow specification of a sequence of statements that as
a group may be executed out of linear sequence. There are two kinds of

control blocks:

(1) conditional control blocks which specify a sequence
of.statements which is executed only if a specified
expression evaluates to a true (or false) value;

(2) iteration control blocks which specify a sequence of
statements which is executed repeatedly while a

specified condition is true.

12.1 Conditional

Control Blocks

Syntax:

ifstat

elseifstat

elsestat

endifstat

IF or (DO / THEN)
ELSEIF or (DO / THEN)
ELSE [DO]

ENDIF

A conditional control block takes the form

IF statement

. ifbody

EISEIF statement (@ or more ELSEIF's allowed)

. elseifbody

ELSE statement (ELSE may be omitted)

. elsebody

ENDIF statement

12-2

The dots may be any sequence of executable statements balanced and well

nested with respect to IF and ENDIF, FOR and ENDFOR. and WHILE and

ENDWHILE statements. The statements of an ifbody or elseifbody are

executed only if

preceding <or>

(which must have
executed control transfers to the statement after the ENDIF .

a value is defined as true if it is odd and false if it is even. Systematic

it is the first body in the structure for which the

is true. The elsebody is executed if none of the <or>'s

results of type scalar) are true. After the body is

indentation of nested control hlocks is strongly recommended.

In SIMPLE

12-3

12.2 Iteration Control Blocks

Syntax:

forstat = FOR forclause (DO / THEN)

forclause = [reporder] name '«' (whclause / toclause)

wheclause = conditionall [',' conditional2] WHILE conditional3l
toclause = conditionall [BY conditional?] TO conditional3
whilestat = WHILE whileclause (DO / THEN)

whileclause = [reporder] conditional

reporder = TBU / TUB / BTU / BUT / UTB / UBT

endforstat = ENDFOR

endwhilestat = ENDWHILE

An iteration control block takes the form

FOR or WHILE statement

. forbody

ENDFOR or ENDWHILE

The dots may be any sequence of executable statements well nested with

respect to other control blocks. In general, every repetition consists of

three actions.

Test : the test expression is evaluated and if false
repetition ends and control is transferred to

the statement after the ENDFOR or ENDWHILE
Body : the statements of the forbody are executed

Update : the update expression is evaluated and assigned to

the iteration control variable.

12-4
There are six possible orders of execution of the three actions within
a single repetition: BTU, BUT, TBU, TUB, UTB, UBT. 1In addition‘to these
actions an initial value for the iteration control variable can be

specified.

If present <reporder> specifies the order actions are performed within a
repetition. If not present, then TBU is assumed. However, if a whclause

is present with no initialization then UTB 1is assumed.

In a <forclause> the name specifies the iteration control variable. If
the name is already declared it must be a scalar variable, otherwise it is

declared locally as-a scalar variable.

In a <whclause> , if <conditional2?2> is present, then <conditionall>
specifies the initial value for the iteration control variable and
<conditional?2> is the update expression. If <conditional2> is not present,
<conditionall> is the update expression and no initialization is specified.

<conditional3> is the test expression.

In a <toclause>, <conditionall> specifies the initial value of the
iteration control variable, <conditional2>, which is reevaluated on each
repetition, specifies the value to be added to the iteration control
variable as the update action, and <conditonal3> specifies the test
expression. Iteration will continue while the value of the control
variable is not greater than the value of the test expression, unless

the increment is a negative constant,in which case while the control
variable is not less than the test expression. If <conditional2> is not

present, an increment of one is assumed.

In the <whileclause> , the <conditional> specifies the test expression.
No initialization and update action is specified, thus the six repetition

orders actually specify only two different cases, body-test and test-body.

13-1

13. Expression Statements

Syntax:

expressionstat = expression

An expression statement consists solely of an expression. The expression

is evaluated}and its result value is left in the accumulator of the SIPU.

14, Miscellaneous Statements

14.1 BREAK Statement

Syntax:

breakstat = BREAK

The BREAK statement causes a breskpoint to be set in the program.

1k-1

Appendix A

Character Codes

Codes in octal

Code Char- Code Char- Code Char- Code Char-
acter acter acter acter
) blank 20 o Lo e 60 P
1 ! 21 1 L1 A 61 Q
2 " 22 2 ko B 62 R
3 # 23 3 L3 c 63 S
L $ 2L L4 LY D 6k T
5 % 25 5 L5 E 65 U
6 & 26 6 L6 F 66 v
T ' 27 7 L7 G 67 W
10 (30 8 50 H TO X
11) 31 9 51 I T1 Y
12 * 32 52 J T2 zZ
13 + 33 ; 53 K 73 [
14 R 34 < 5k L Th \
15 - 35 = 55 M 75]
16 . 36 > 56 N 76 4
17 / 37 ? 57 0 7 «
155 | Carriage
return

Appendix B

Rules for Types for Expression Operators

operator left operand type | right operand type result type
& all types OK all types OK same as right operand
WHERE all types OK all types OK same as left operand
IF scalar given by Appendix (¢ if
THEN all types OK ELSE present, other-
wise is same type as
THEN operand
EISE must match THEN
type according to
Appendix C
<

See Appendix C ----

OR AND (Boolean)

= #

< <=

> >= scalar scalar scalar

REM + -

LI

CYCLE SHIFT

RETURN must match return

SRETURN type in FUNCTION wdefined
statement according

FRETURN to Appendix C

EXIT label name wndefined

+ - NOT (unary) scalar scalar

GOTO scalar undefined

$ indirection reference specified by name

declaration or any

@ reference

all types OK

reference

table continues

operator left operand type| right operand type result type
. field reference scalar specified by FIELD
statement or any
$ field all types OK scalar specified by FIELD
statement or any
@ field scalar scalar scalar
[] eeew - bevector ©w - 1 scalar specified by name -
declaration or any
() function call| scalar arguments must be specified by FUNCTION
of type specified statement
in FUNCTION state-
ment
FRONT REAR vector scalar specified by name
GETF GETR declaration or any
PUTF PUTR
AND OR scalar scalar scalar
EOR (logical)
ABS scalar scalar

second operand type

Appendix C

Type Semantics

first operand type

Scalar Vector Reference | Descriptor| Any
Scalar scalar illegal illegal illegal | Sscalar
1 word 1 word
Vector illegal vector illegal vector vector
2 words 2 words 2 words
Reference illegal illegal reference | reference | reference
2 words 2 words 2 words
Descriptor illegal vector reference descriptor | descriptor
' 2 words 2 words 2 words 2 words
Any scalar vector reference descriptor | any
1 word 2 words 2 words 2 words 1 word

This table specifies the type semantics for the following four contexts

within expressions. Some combination of operand types are illegal. TFor
the remaining combinations, the result type and the number of words of value

to copy are specified.

1) Assignment operator.

first operand = left operand of '<«'
second operand = right operand of '<!'

If "illegal" then a compile time type check error will occur.

2) Function Argument Passing.

first operand = formal argument
second operand = actual argument

If "illegal" then a compile time type check error will occur.

3) Returning value successfully from function.

first operand = operand of SRETURN or RETURN
second operand = type specifies in FUNCTION statement
If "illegal" then a compile time type check error will occur.

L) IF operator when ELSE clause present.

first operand = THEN operand
second operand = ELSE operand
If "illegal" a compile time error will occur only if the result of the IF

operator is used in a larger expression.

ABS

ANY

ANYS

BIT

BREAK

BTU

BUT

BY

CODE
CONSTANT
CYCLE
DESCRIPTOR
DESCRIPTORS
DO

ELSE
ELSEIF
END
ENDFOR
ENDIF
ENDWHILE

EOR

Appendix D

Reserved Words

EQUIVALENCE
EXTERNAL
EXIT
FIELD

FOR
FRETURN
FRONT
FUNCTION
GETF

GETR
GLOBAL
GOTO

IF

MACRO

NOT
ONE\BASED
OR

PUTF
PUTR
REAR
ﬁEFERENCE

REFERENCES

REM
RETURN
RETURNING
RING

RINGS

. SCALAR

SCALARS
SHIFT
SIGNED
SRETURN
STRING
STRINGS
TBU
THEN
THRU
TUB
UBT
UTB
VECTOR
VECTORS
WHERFE
WHILE

WORD

Appendix E

Constant Expressions

When most operators are used as principle operators, an expression can be

evaluated as a constant expression if all its operands are themselves

constant expressions. All the exceptions to this rule are listed below.

1)

2)

3) .

L)

5)

Operators that yield unspecified results may not be evaluated as constant
expressions. This includes the following operators: GOTO, RETURN,
SRETURN, FRETURN, and EXIT.

The assignment and function call operators may not be constant evaluated.

Operators that reference memory may not be evaluated as constant expres-
sions. This includes the following operators: indirection, field

access operators, ring access operators, and subscripting.

The IF operator is evaluated as a constant expression if (a) the IF
operand is constant and true valued and the THEN operand is constant
or (b) the IF operand is constant and false valued and the ELSE

operand is present and constant.

The reference operator ('@') is evaluated as a constant if its operand

is (a) a constant expression or (b) a simple global variable name.

	Table of Contents
	1. Introduction
	2. SIMPLE Character Set
	3. SIMPLE Program Lexical Structure
	4. Statement Syntax Notation
	5. Memory
	6. Values
	7. Names
	8. Expressions
	9. Statements
	10. [More statements]
	11. Function Block Statements
	12. Control Blocks
	13. Expression Statements
	14. Miscellaneous Statements
	Appendices
	A. Character Codes
	B. Rules for Types for Expression Operators
	C. Type Semantics
	D. Reserved Words
	E. Constant Expressions

