
SIMPLE LANGUAGE SPECIFICATION

REFERENCE MANUAL

Mark Greenberg

July 26., 1973

Revised September 5, 1973

Center for Research in Management Science

Systems Group

Technical Document

R-1

0.5 compiler differences from 1.0

1) may not re-use name declared as scalar constant

2) may not use STRING in formal argument list

3) DESCRIPTOR statement not implemented

4) array fail actions not implemented

5) NOT is same precedence as GOTO

6) FRETURN values not implemented

7) ANY type not implemented

8) :function calls precedence is just lower than indirection

9) ENDWHILE not implemented

l. Introduction

2. Character Set

3. Lexical Structure

3.1 Comments

3.2 Statements

3.3 Primaries

TABLE OF CONTENTS

4. Statement Syntax Notation

5. Memory

6. Values

6.1 Scalars

6.2 Descriptors

7. Names

7.1 Scope of names

7.2 Interpretation of names

7.3 Types for names

8. Expressions

8.1 General semantics

8.2 Semantics of operators

9. Statements

9.1 Block organization

9.2 Executable Statements and labels

10. Declaration Statements

10.1 SCALAR Statements

10.2 CONST.ANT Statements

10.3 VECTOR Statements

10.4 RING Statements

10.5 STRING Statements

10.6 REFERENCE Statements

10.7 DESCRIPTOR Statements

to.a FIELD Statements

10.9 EQUIVALENCE Statements

10.10 MACRO Statements

11. Function block statements

11.1 FUNCTION Statement

11.2 END · Statement

12. Control Blocks

12.1 Conditional Control Blocks

12.2 Iteration Control Blocks

13. Expression Statements

14. Miscellaneous Statements

14.1 BREAK Statement

Appendix A: Character Codes

Appendix B: Expression Operator Type Rules

Appendix C: Type Semantics

Appendix D: Reserved Words

Appendix E: Constant Expression Evaluation

1-1

1. Introduction.

This document provides a complete description of the SIMPLE language.

SIMPLE is a programming language system especially designed to facilitate

the development of large programming systems such as operating systems and

language systems. SIMPLE is not intended to be a general purpose language;

however, its useful application may very well exceed the scope of system

programming.

The SIMPLE language was designed by the author with the help of Charles

Grant, Paul McJones and David Redell. Its design was influenced by the QSPL

language developed for the Berkeley SDS-940 Time-Sharing System.

The SIMPLE language includes the following features:

(1) a complete block structured control mechanism for specifying

iterative and conditional control structures;

(2) convenient methods for accessing and manipulating partial word

values, one dimensional arrays of various element sizes, strings

of characters, and ring buffers;

(3) a character and number oriented input-output facility;

(4} recursive functions;

(5) a token substitution macro-facility.

l-2

The SIMPLE language system is a totally int_egrated, interactive system that

includes a program text editor, a compiler, and a source language level

debugger (see SIMPLE Interactive Language System Reference Manual). Code is

compiled for an instruction processing unit that was designed in parallel

with the SIMPLE language and implemented as a microprogram. (called the SIPU)

for the META4 microprocessor (see SIMPLE Instruction Processing Unit Reference

Manual). A collection of standard functions called the SIMPLE Runtime is

provided as part of the integrated language system (see SIMPLE Runtime

Reference Manual).

2-1

2. SIMPLE Character Set.

The SIMPLE language character set consists of 65 characters: the 26 letters

A-Z, ten digits ¢-9, the 27 special characters:

II # % & () * + , /

$;<=>?@[\]t+

blank and carriage return.

All other characters which may exist in a SIMPLE program are ignored by the

SIMPLE compiler in determining the content of a SIMPLE program.

The character codes for the characters are given in Appendix A.

3-l

3. SIMPLE Program Lexical Structure.·

A SIMPLE program consists of a number of blocks. All blocks are function

blocks which specify a function body except for the first block in the

program which is the global declaration block. Each block is made up of

statements and co:mments.

3-2

3.1 Comments

A comment begins (1) with an asterisk which is the first non-blank character

following a statement, another comment, or the beginning of the block, or

(2) with a double dot(..) anywhere within a program except inside a quoted

string. A comment is terminated with a carriage return. The string of

characters in a comment is completely ignored by the compiler except that a

comment within a statement serves to delimit primaries.

3-3

3. 2 Statements

A statement is a string of characters which begins following another state­

ment, a comment or the beginning of the block and ends with a carriage return

or a semi-colon not enclosed in quotes. A carriage return which terminates

a double dot comment does not end the statement also. Thus, statement con­

tinuation to the next line can be achieved by ending a line with a double

dot.

The following example contains five comments and two statements.

Example:

* THIS IS A COMMENT

A+ B+C; * .A.-,OTHER COMMENT

F(A, COMMENT FOR A

B, COMMENT FOR B

C) ;* COMMENT FOR C

3-4

3.3 Primaries

The string of characters in a statement is divided into a string of primaries

which may be of several types;

(1) names

(2) numbers

(3) character constants

(4) string constants

(5) operators.

a) A name is any number of alphanumeric or blackslash characters beginning

with a letter or blackslash (only the first 127 characters are relevant, the

rest are ignored). For programs compiled in runtime mode, percent sign('%')

is also a legal character for a name.

b) A number is a...~y number of digits optionally followed by a 'B' optionally

followed by another string of digits. The 'B' indicates the number is octal,

otherwise it is decimal. The optional string of digits is interpreted as a

decimal number which is a scaling factor indicating the number of octal zeros

to append to the number. All constants are trtm.cated to 32 bits. The numbers

in the following example all have the same value.

Example:
400B

4B2

256

c) A character constant is any one to four pseudo-characters enclosed in

single quotes. The value of the character constant is the values of the

pseudo-characters right justified in a 32-bit word, zeros filling in unspecified

characters.

3-5

d} A string constant is any number of pseudo characters enclosed in double

quotes.

A pseudo character is:

(l) any character other than ampersand, carriage return, single quote

or double quote;

(2) An ampersand followed by one to thr_ee octal digits. The octal

number truncated to 8 bits defines the value of the pseudo character.

(Example: &155 is a carriage return character.)

(3) An ampersand followed by a letter. The value of the pseudo char­

acter is the code for the letter plus lOOB. (Example: &A is

equivalent to &141.) This allows easy specification of the control

characters.

(4) An. ampersand followed by any other character. The ampersand serves

as an escape and the following character is taken literally.

(Example: && is a single ampersand.) This allows single quotes

and double quotes to be inserted in character and string constants,

respectively.)

Carriage returns are illegal within character or string constants thus pre­

venting rwiaway- compilations when a programmer neglects to insert a closing

quote. Within string constants only, an &+- will cause all subsequent char­

acters up to and including a carriage return to be ignored~ This provides

a method for line continuation within string constants.

e) An operator is any special character other than single quote or double

quote.

4-1

4. Statement Syntax Notation.

The syntax of SIMPLE statements will be specified in an extended BNF-like

notation which is now described.

(1) Lower case names are syntactic types. Syntactic type names used

in descriptive text are enclosed in angle brackets for clarity.

When the same syntactic type is used more than once in a BNF

statement a number may be appended to the syntactic type so that

unambiguous references to the syntactic types may be made in the

descriptive text.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Upper case names are literals (such as reserved words).

Characters enclosed in single quotes are literals.

The construct [x]

The construct (x)

indicates that x is optional.

indicates that exactly one occurrence of

x must be present. Parentheses a.re used for grouping.

The construct arb(x) indicates that zero or more occurrences

of x may be present.

The construct sep(x~ y) indicates that one or more occurrences

of x must be present separated by occurrences of y.

Successive constructs indicate concatenation.

/ is used to indicate alternation.

5-1

5. Memory.

All data which may be referenced from expressions of a SIMPLE program is

stored in the "memory" of the SIMPLE program. Memory is divided into two

parts, variable memory and constant memory. Variable memory is subdivided

into three kinds:

(1) global memory

(2) local memory

(3) external memory.

Constant memory is read-only. It holds the constant space for vectors

initialized at compile time plus the values of all constants used in ex­

pressions. Global memory is allocated at compile time and never becomes

de-allocated. Space for globa] variables, global vectors, and local

vectors are allocated in global memory. Local memory is allocated on

:function call and deallocated on function return. Local memory is used for

allocation of local variables. External memory is supplied through the

capability machinery by the operating system. Data in external memory may

be accessed with "memory reference expressions" in exactly the same way

that global memory is referenced.

6-1

6. Values.

All values manipulated by expressions in SIMPLE programs are of two kinds:

6.1 Scalars

A scalar is a one word (32-bit) value. It is the fundamental unit of infor­

mation manipulated by expressions of a SIMPLE program. Scalars may have a

number of specialized interpretations when used as the operands of certain

operators.

(1) a scalar used as the right operand of a field tailing operator is

interpreted as a field selector (see SIPU manual for details).

(2) a scalar used inside s~uare brackets of a subscripting operation

is interpreted as a positive integer index.

(3) a scalar used as the operand of a GOTO operator is interpreted as

an instruction address relative to the beginning of the code for

the currently executing function.

(4) a scalar used as the second operand of a ring access operator

is interpreted as a ring selector (see SIPU manual for details).

(5) a scalar used preceding parenthesis in a function call operation

is interpreted as a function identification number (see SIPU

manual for details).

Details of the use of scalars are given with the semantic descriptions

of the relevant operators in Section 8.2.

6-2

6.2 Descriptors

A descriptor is a two word value. There are two kinds of descriptors.

(l) Vector descriptors provide a complete description of a "vector" in

memory. A vector is a linear, contiguous, ordered set of fixed

sized values or "elements" stored in memory. A vector descriptor

specifies

a) The location of the vector in global, constant, or external

memory.

b) The number of elements in the vector which must be between l

and 64K.

c) The element size of the vector which may be 8 bits, 16 bits,

or 1 to 127 words.

d) An index origin of one or zero.

e) A two's complement sign extension option for 8 bit, arid 16 bit

element sizes (see SIPU manual for details).

(2) References. A reference specifies the location in memory and the

size of a value stored in memory. The value specified may be any

continuous sub-set of the bits of a single word or any 1 to 127

words (see the SIPU manual for details).

7-1

7. Names.

Names are used in SIMPLE to represent various kinds of objects. The meaning

of a name is determined by its declaration. Every name must be declared. A

name may be declared

{1) in a declaration statement,

(2) when used as a label beginning a statement,

(3) when used as the control variable of an iteration control block, or

(4) in a FUNCTION statement.

7-2

7.1 Scope of names

Every name has a scope which limits the context in which the declared meaning

of a name is valid. A name may have global or local scope. A name is global

if it is declared in the global declaration block or if it is the name de­

clared as a function in a FUNCTION statement. Also, there are a number of

reserved words (see Appendix D) which are pre-declared and have global scope.

Furthermore, the global names of the runtime are also global to the user

program. All other declarations are within some function block. The scope

of such names is local and their declared meaning is valid only in the

function block in which they are declared.

A particular name may be declared in any number of blocks. If declared in

several function blocks, the name will have a different meaning in each

function block. If a name is declared in both a function block _and the

global declaration block, then within the function block the locally de­

c+a.red meaning prevails. Names declared globally as macros cannot be rede­

clared locally. It is a program error to redeclare a reserved word name.

It is also a program error if a name used within a function block is not de­

clared globally or declared within the function block.

In general, a name declared within a block may not be redeclared within the

same block. However, names declared as scalar constants may .be redeclared

an arbitrary number of times as scalar constants with different values using

the CONST.ANT declaration statement. The value used in a particular reference

to the name will be that specified in the textually preceding declaration of

the name.

7.2 Interpretation of names

Names may be declared to represent one of several kinds of objects

(1) operators

(2) macros

(3) values in memory.

7-3

All operators are pre-declared reserved words and are used in the same contexts

as special characters. (Examples: AND, IF, FUNCTION.) See Appendix D for

complete list.

Macros provide a method by which use of a name declared as a macro can be

viewed as equivalent to an arbitrary string of primaries. Macros are

discussed in greater detail elsewhere.

Memory value names provide a symbolic way of referri~g to values in memory.

These names can refer to values in constant memory or variable memory and are

said to be declared as constants or variables, respectively. Names declared

as constants must have initial values specified in their declarations whereas

names declared as variables may not.

7-4

7.3 Types for names

Na.mes for values in memory have a type associated with them; scalar, vector,

reference, descriptor or any. This type is specified when the name is declared.

Na.mes declared as type vector, reference, or descriptor can also have assoc­

iated with them one additional level of type specification which indicates

the type of the elements in memory to which the descriptor refers. Scalar

names declared in FIELD statements can also have a type specification for

the field referenced by the field selector. The type of an element in memory

is specified with a <type> construct which is interpreted as follows:

word type

SCALAR scalar

VEGrOR vector

RING vector

REFERENCE reference

STRING reference

DESCRIPTOR descriptor

ANY any

8.; Expressions

Syntax:

expression

where

conditional

or

and

not

relational.

rem

addition

multiplication

unary

return

exit

sign

assignment

indirection

tailing

bottom

logical

absolute

code

= sep(where, '&')

= ~onditional [WHERE conditional]

= IF or (DO/ THEN) or [EI.SE conditional]/ or

= sep(and, OR)

= sep(not, AND)

= [NOT] relational

= rem. [(I=' / I# I / I> I / I>= I / '< ' / • '<: =') rem]

= sep(addition, REM)

= sep(multiplication, ('+' / '-'))

= sep (unary, ('*' / '/' /CYCLE/ SHIFT))

=return/ exit/ sign

=(RETURN/ SRETURN / FRETURN) [conditional]

= EXIT [name]

= ['+' I'-' / GOTO] assignment

= indirection ['+' conditional]

= arb('$' /'@')tailing

= sep(bottom, ('$' / I I . I '@'))

8-1

=logical/ absolute/ code/ ringaccess / functioncall /

subscripting

=(AND/ OR/ EOR) '(' expression

= ABS '(' expression')'

=CODE'.(' initlist ')'

' ' , expression')'

8-2

~-. ri_ngaccess = {FRONT/ REAR/ GETF / GETR / PUTF / PUTR)

I (I expression[',' expression] [failaction] I) I

:functioncall = primary I (I [actuals] [failure] I) I

actuals = sep(expression, I , I)

failure = I . I [., [' name I] I] [expressioni]

subscripting = primary arb(' [' expression (failaction] I] I)

primary = I (I expression I) I /constant/ variable

failaction = I • I expression

8.1 General Semantics

8.1.1 Definition.

8-3

The term "expression" is used in this manual to mean any sequence of operands

and operators which conform to the stated syntax and semantic rules for

expressions. Thus, any operand of some operator is itself an expression and

a sub-expression of a larger expression.

8.1.2 Syntax.

Two types of syntactic constructs are used to associate an operator with its

operand(s): infix syntax and function syntax. For example:

X + y

AND(X, Y)

infix syntax

function syntax

In particular, the bitwise logical and ring access operators use function

syntax while most others use infix syntax. In addition, the function call

and sq_uare brackets, respectively, immediately following a <primary>. For

example:

F(A)

V[I]

function call

vector subscripting

8-4

8.1.3 Simple and complex expressions.

Every expression is either "simple" meani_ng it has no operator or else it is

complex and has a "principle operator" which is the operator of lowest

precedence in the outermost level of parenthesis or square bracket nesting.

For example, the '* I is the principle operator in the followi_ng expression:

(A + B) * V[I]

If an expression is simple then it consists of a single variable name or a

single constant, optionally enclosed by any number of balanced parentheses.

8.1.4 Associativity.

Operators of the same precedence are left associative. For example, the

following two expressions are equivalent:

A+ B - C

(A+ B) - C

However, the assignment operator ('+') is right associative.

8.1.5 Order of evaluation~

Every complex expression evaluates its principle operator last after

evaluating the operands of the principle operator. This rule recursively

applied to the operands of the principle operator as sub-expressions specifies

the order of evaluation of an expression.

Note that for most binary operators (exceptions specified in operator

semantics) the order in which the operands are evaluated is unspecified.

Note also that certain operators (e.g., boolean AND) supress evaluation of

one operand conditionally on the evaluation of the other.

8-5

8.1.6 Memory reference expressions.

A "memory reference expression" is an·expression which refers to a value in

the memory of a SIMPLE program. A memory reference expression is either a

simple variable or a complex expression which satisfies one of the following

conditions:

a. principle operator is I I field tailing,

b. principle operator is field tailing, and left operand of

1 $' is a memory reference expression,

c. principle operator is vector subscripting ([]) ,

d. principle operator is indirection ('$') ,

e. principle operator is a ring access operator

(FRONT, REAR, GETF, GETR, PUTF, PUTR)

8.1.7 Constant expressions.

A "constant expression" is either a simple constant or a complex expression

satisfying both the following rules:

a. all operands of the principle operator are themselves constant

expressions,

b. the principle operator can be evaluated as a constant according to

the rules in Appendix E.

8-6

8.1.8 Result of evaluation.

Every expression when evaluated yields a "result." A result has a number

of attributes:

a.- a value,

b. a value size,

c. a type, and

d. a reference (for memory reference expressions only).

Some operators (e.g., FOR, GOTO) yield unspecified results when evaluated.

Memory reference expressions include a reference as part of the result

which is used instead of the value in certain contexts such as the left

operand of an assignment operator.

Result type .

. Evaluation of an expression yields a result with one o"f the following types:

a. scalar,

b. vector,

c. reference.

In addition, a result may be of one of two.composite types. A result is of

type "descriptor" if it is of type vector ,2r of type reference, and thus,

is legal in any context where an operand of type vector or reference is

required and is interpreted semantically exactly as if it were of the

required type. A result is of type "any" if it is of type scalar or vector

or reference, and thus is legal in any context and is interpreted semantically

exactly as if it is of the required type (exceptions of this rule are specifi­

cally noted for the assignment and :function argument passing operations).

The specification of a type attribute of a result serves two distinct

semantic purposes:

8-7

a. Type attributes are used to determine of one or two word values are

to be copied by the assignment operator and during passing of function

arguments. Details are discussed with the semantics of these operations.

b. Type attributes are used to test the validity of the operand(s) of an

operator at compile time. The detailed rules of type validity checking

for the operators is given in Appendix B.

The type machinery is not totally effective since types can be associated with

values in memory to only one level of referencing and it is possible to con­

struct expressions that have more than one level of referencing, e.g., A[I] [J].

Such expressions will evaluate to a result of type any and therefore improper

uses of that expression may go unchecked.

Result value size.

A result value has a size which is specified as one or more words. The

following rules must be observed for valid expression construction:

a. A result of size one word must be type scalar, or type any.

b. A result of type vector, reference or descriptor must be of size

two words.

c. Sizes greater than two words can occur only as the result of memory

reference expressions. Such results are referred to as "multi-words."

A multi-word result can be legally used only as the left operand of a

1$1 field tailing operator or as the operand of an '@' reference operator.

Only the reference of a multi-word result can be used, never the.value.

If an element in memory, less than 32 bits in size, is evaluated with a memory

-··· reference expression then the result is extended to one word with the element

value right justified. The part-word element value may be two's complement

sign extended when evaluated if the sign extended option is specified in the

vector descriptor, reference, or field selector.

8-8

8.1.9 Scalar Operators.

Most of the operators in SIMPLE expressions are "scalar operators." A

scalar operator when evaluated generates a result of type scalar. All the

operands of a scalar operator must be of ~ype scalar. If the result type

of an operand is type any then the result of that operand is used in

evaluating the scalar operator as if it were of type scalar.

8.l.10 Evaluation of variables.

A simple expression which consists solely of a name declared as a variable

is evaluated as follows. The result type is the type specified in the

declaration of the name. The result value is the value of the variable in

memory at the time of evaluation. The result size is two words for a vari­

able of type vector, reference, or descriptor and one word otherwise. The

result reference is to the variable in memory.

8.l.ll Evaluation of constants.

A constant in a simple expression may be orie of the following:

a. A number, in which case the result is of type scalar, and size one

word, with value specified by the number.

b. A stri_ng constant in which case the result is of type reference

and size two words, the value being a reference to a three word

stri_ng descriptor for a vector of 8-bit elements which is allocated

and initialized with the characters of the string constant in

constant memory.

c. A name declared to be a constant in which case the result value and

type are those specified in the declaration of the name.

d. A character constant in which case the result is of type scalar with

value specified by the character constant.

8-9

8.1.12 Semantics.

The semantics of all the operators are listed in Section 8.2 in order of

precedence or binding strength, the lowest precedence (most loosely bound)

operator first. Operators of the same precedence are listed t_ogether.

8-10

8.2 Semantics of Operators

&

WHERE

causes successive evaluation. The left operand is evaluated and

then the right operand. The result is the result of the right

operand.

Example: X + Y & GOTO L

is similar to '&' but causes evaluation of the right operand before

the left operand. The result is the result of the left operand.

It may not be iterated.

Example: F(X, Y) WHERE X + 1

IF
THEN DO
EIBE

8-11

specify conditional evaluation. These operators may appear in the.

general form

IF exprl THEN expr2 [ELSE expr3]

DO may be used in place of THEN. exprl, which must be of type

scalar, is evaluated and if its result value is true (odd), then

expr2 is evaluated and its result becomes the result of the IF

operator. Otherwise, expr3, if present, is evaluated and becomes

the result value. If expr3 (which may include another IF operator)

is not present, then the ELSE value is unspecified. The result

type of the THEN and ELSE operands is specified in Appendix C.

Only if an IF operation result is used as an operand of a larger

expression can a type check occur. Examples:

SCALAR

VECTOR

S, T, X

V, D

T + (IF X THENS ELSE D)

IF X THEN V + D ELSET+ S

T + (IF X THENS)

IF X THEN T + S

T + (IF THENS ELSE GOTO L)

illegal, THEN and ELSE
types don't match

OK

illegal, ELSE value
undefined

OK

OK, GOTO result cannot
be used

+

OR

is the assignment operator. It has the same precedence as

the indirection operator('$') for its left operand and ranks just

below IF for its right operand. The right operand is evaluated,

and its result value becomes the result value of the assignment

operation, and also becomes the value of the element in memory

specified by the result reference of the left operand. The left

operand must be a memory reference expression which references

variable memory. If the element size specified by the left operand

is a partial word of n bits then only the right n bits of the 32

bit right operand result value are stored in memory. The table in

Appendix C details the result type and number of words of value

stored for the assignment operation as a function of the types of

the left and right operands. Note that if both operands are of

type any then only 1 word is stored, that is the operands are

assumed to be scalar.

is the Boolean or. It is a scalar operator. The result value

is 1 if either operand is true; otherwise, the result value is

0. The right operand is not evaluated if the left operand is true.

Example: 4 < 5 OR F(X) result: 1

F(X) not evaluated

.AND is the Boolean and. It is a scalar operator. The result value

is 1 if both the operands are true; otherwise, the result value

is ¢ The right operand is not evaluated if the left operand is

false.

Example: 8 < 6 OR F(X) result: ¢

F(X) not evaluated

____ _______L____,_~"

8-13

NOT is the Boolean not. . It is ·a scalar operator. Its result value is

1 if its evaluated operand is false, otherwise its result value

= #
< <=
> >=

is (J

are the relations equal to, not equal to, less than, not greater

than, greater than, not less than, respectively. They are scalar

operators. Each relational operator evaluates its operands and

then performs the test. If the relation is true, then the result

value is 1; otherwise, the result value is 0.

REM computes the mathematical remainder after division. It is a

scalar operator. The magnitude of .A REM B is IAI modulo IBI .

+

*
SHIFI'
CYCLE

I

The sign of the result is the sign of B.

perform 32-bit two's complement integer addition and subtraction,

respectively. They are scalar operators.

'*' and '/' perform 32-bit two's complement integer multiplica­

tion and division, respectively. SHIFI' shifts the 32 bits of

the left operand the number of places indicated by the two's

complement right operand. A positive right operand specifies a

right shift and a negative left shift. Vacated bits are replaced

by zeros. CYCLE is the same but performs 32-bit cyclic shifts;

that is, the bits that spill off one end are shifted in at the

other end. All these operators are scalar operaotrs.

+ -
GOTO
RETURN
SRETURN
FRETURN
EXIT

8-14

are the unary operators. Unary '+' is ignored. Unary I I is

a scalar operator and computes the two's complement of its operand.

GOTO interprets the value of its operand as an instruction address

within the current function body. Control is transferred to this

address. In general, to be meani_ngful, the value of the operand

should be the value of a label. The operand must be of type scalar.

Only memory reference expressions are legal operands to a GOTO

operator.

Examples: GOTO L

GOTO DISP[I]

(where L is a label)

(where DISP is a vector whose

elements have been initialized to the

values of labels)

RETURN , SRETURN, and FRETURN cause control to return to the

calling function from the current function. A function may return

a single value and a predicacy condition (success or failure).

Normally, the single operand, if present, is evaluated and becomes

the return value. If not present, then the return value is unde-

fined. RETURN and SRETURN specify return with a success­

predicacy condition. The table in Appendix C indicates which

combinations of operand type and return type specified in the

f'Unction head are illegal for SRETURN and RETURN. FRETURN

specifies return with a failure-predicacy condition. The operand

of FREI'URN must be of type scalar.

8-15

EXIT specifies control to leave the current control block. If

the single argument, which must be a label name, is present, then

control is transferred to the statement following the last state­

ment of the control block labelled by the operand. A control

block is named by a label on the IF, FOR, or WHILE statement

which begins the control block. It is a program error if the

EXIT operator is not textually enclosed within the specified

control block. If the operand of the EXIT operator is not

present, then the innermost control block is exited. It is a pro­

gram. error if there is no enclosing control block.

$@ Unary '$' is the indirection operator. Its single operand must

be of type reference. The result value is the value in memory

described by the reference. If specified in the reference, partial

word values are sign extended. The result size is the same size

specified by the reference. A runtime error occurs if indirection

is applied to a reference to a multi-word value. If the operand

is a simple name declared as a reference, then the result type is

the type specified in the name declaration, otherwise the result

is of type any. The result reference is just the operand result

value. Unary '@' is the reference operator. Its operand must

be a memory reference expression. The result type is reference

and its two-word result value is a reference to the value in memory

indicated by the operand.

Warni_ng! References to local values will not remain valid after

a return to the calling function.

------ ------------~

$. @

8-16

Binary ' ' . and '@' are the field access or tailing

operators. For these operators, the right operand must be of type

scalar and is interpreted as a field selector. For the ' '
operator, the left operand, which must be of type reference, spec­

ifies the location in memory of a value. For the '$' operator,

the left operand is a value which may be of any size or type. For

both ' ' and '$' the result value is the value of the field

selected by the field selector of the value specified by the left

operand. If specified in the field selector, partial word fields

are sign extended. A runtime error occurs if the selected field

is not within the value; e.g., the displacement is greater than

the size of the value. The result size is the size of the selected

field. If the right operand is a simple name declared in a FIELD

statement then the result type is the type specified in the name

declaration, otherwise the result is of type_any. The result

reference is to the field in memory specified by the field refer­

ence operation.

For the '@' operator, the left operand must be a value of type

scalar. The result value is constructed by placing the value of

the left operand into the selected field, i.e., the result value

of V @ F is the value of T after (T + ¢ ; T$F + V). The result

is of type scalar. The selected field must have size not greater

than one word.

[]

8-17

specify the vector subscripting operation. Only one dimensional

subscripting is allowed. The operand preceding the square brackets

must be of type vector and describes a vector in memory. The oper­

and enclosed in the square brackets is the subscript (or index) and

specifies the element within the vector to be referenced. Vector

elements are numbered starting with zero or one depending on the

lower bound field in the vector descriptors. If the subscript is

out of bounds, then a failure action is performed according to the

rules given with the function call semantics. The result value is

the value of the specified vector element. If specified in the

descriptor, the value from a partial-word element sign is extended.

The result size is the element size specified in the vector de­

scriptor. If the vector operand is a simple name declared as a

vector, then the result type is the element type specified in the

name declaration, otherwise the result is of type any. The result

reference is to the selected element of the vector.

()

8:-18

when immediately preceded by an operand, specify a function call.

The preceding operand specifies the function to be called. Typ­

ically, this operand will be a function name (the value of a

function name is the function's identification number); however,

it may be any memory reference expression of type scalar. In gen­

eral, to be meaningful, the value of the operand should be obtained

from the value of a function name.

Arguments.

Inside the parentheses may be specified a list of actual argument

expressions separated by commas. The number and types of the actual

arguments must match the number and types of the formal arguments

of the function to be called. If the function to be called is

specified by its function name, then actual arguments may be ommitted

from the actual argument list if default values for the corresponding

formal arguments are specified in the FUNCTION statement of the

function to be called. The effect is exactly the same as if the

default value were inserted directly into the actual argument list.

Example: If F has six formal arguments, then in the call

F(, X,, Y)

the first, third, fifth, and sixth actual arguments are

omitted and default values for the corresponding formal

arguments must be specified.

8-19

All arguments are passed by value; thus, the value of each actual

argument expression is assigned as the value of the corresponding

formal argument. For each pair of corresponding actual and formal

arguments the table in Appendix C indicates the legality of the

argument and the number of words of value copied as the argument

is _passed.

8-20

Failure Action.

If a function call returns a failure predicacy (or if a subscripting

or ring access operation fails} a failure action is performed. The

fail action performed is determined from the <failure> or <fail­

action> clause specified with the failing operator according to

the following rules:

l} If no. <failure> or <failaction> is present (i.e., no

colon), then a runtime trap occurs.

Example: F(X)

2) If only the colon is present then execution will continue

as if the operation had succeeded. However, the result

will be unspecified.

Example: IF X=~ THEN GETF(S:)

3) If a square-bracketed name (which must be a variable) is

present following the colon (may be present only for

function calls), then the failure return value of the

function call is stored in the specified variable.

Example: F(X:[T])

4) If an <expression> is present after the colon, then the

expression is evaluated and its result becomes the result

of the operation. If a square-bracketed name is also

present, then the failure value store is performed before

the expression is evaluated.

Example: F(X: [T]G(T))

A[I: FREWRN]

FRONT
REAR
GETF
GETR
PUTF
PUTR

8-21

are the ring access operators. They use function syntax. The

first operand must be of type vector, and specifies a vector

descriptor for the ring to be accessed. The second operand must

be of type scalar and specifies the ring selector for the ring

access operation. If the second operand is omitted, then the

first operand must be a simple name and that name with 'PTR'

appended is taken to be the name of the ring selector. If present,

the second operand may be any expression for FRONT or REAR but

must be a simple variable name for GETF, GETR, PUTF, or PUTR .

If the ring access operation fails, then a failaction is performed

according to the rules given with the function call semantics.

All six ring operators will fail if either pointer in the ring

selector is out of bounds of the vector to be accessed. FRONT,

REAR, GETF, and GETR will fail if the ring selector indicates an

empty ring. PUTF and PUTR will fail if the ring selector

indicates a full ring. PUTF and PUTR may only be used as the

principal operator of the left operand of an assignment operator.

GETF and GETR may be used in any context except as the principle

operator of the left operand of an assignment operator. The result

value for FRONT and GETF is the first element in the ring and

for REAR and GETR it is the last element in the ring. GETF and

GETR have the side e:ffect o:f updating the ring selector to

remove the re:ferenced element :from the ring. PUTF and PUTR

have no result value and yield as result re:ference the element

just be:fore the :front ring element or just after the rear ring

element, respectively~ updating the ring selector to include the

referenced element. For all six ring access operators, the

8-22

result size is the element size from the vector descriptor. If

the_first operand is a simple name declared as a vector, then the

result type is the type specified in the name declaration, other­

wise, the result is of type any. The result reference for FRONT,

REAR, GETF, and GETR is to the element referenced at the front

or rear of the ring.

AND when used in function syntax specify the bitwise logical operators.
OR
EOR They are scalar operators. The result value for AND is the end

of the corresponding bits of the operands, for OR it is the

bitwise inclusive or, and for EOR it is the bitwise exclusive or.

ABS give as a result value the absolute value of its operand interpreted

as a 32 bit two's complement number. It is a scalar operator.

CODE can take one or more operands. The operands must all be constant

expressions of type scalar. The value of the operands is compiled

as consecutive instructions in the object code of the program.

Thus operator makes it possible to explicitly specify values to be

stored in the code segment and makes it possible to compile code

that cannot be generated in any other way in SIMPLE.

9. Statements.

Syntax:

9-1

statement = scalarstat / vectorstat / constantstat / ringstat /

macrostat / referencestat / descriptorstat /

equivalencestat / stringstat / fieldstat / functionstat /

endstat / execstat

Statements are of five types:

(1) declaration statements

SCALAR, CONST.ANT, VECTOR, RING, MACRO, DESCRIPTOR, STRING,

REFERENCE, FIELD, EQUIV ALEN CE

(2) function block statements

FUNCTION, END

(3) control block statements

IF, ELSEIF, ELSE, ENDIF, FOR, WHILE, ENDFOR, ENDWHILE

(4) expression statements

(5) miscellaneous statements

BREAK

The control block, expression, and miscellaneous statements are collectively

referred to as executable statements.

9.1 Block Organization

A function block must begin with a FUNCTION statement, any block may optionally

end with an END statement. The body of the function follows the FUNCTION

statement. All declaration statements must textually precede all executable

statements in_the function body.

The global declaration block must consist entirely of declaration statements.

9.2 Executable· Statements and ·Labels

Syntax:

9-2

execstat = arb(name':') (ifstat / elseifstat / elsestat / endifstat /

forstat / whilestat / endforstat / endwhilestat / breakstat /

expressionstat]

An arbi~rary number of label names may be specified at the beginning of

any executable statement. A label is not legal on a declaration statement

or a function block statement. A name specified as a label is declared

as a scalar constant local to the current function block. The value of

the constant is the function base relative instruction address of the

first instruction in the current statement.

Unlike all other names in SLMPLE, except function names, label names

may be used in statements before they are declared. It is a program error

if an undeclared name is used and not subsequently declared as a label

within the function block. Furthermore, it is not legal to declare a

name as a label if it is globally declared. A label name may be used

in the following cases:

(1) In any executable statement (€xcept an operand of CODE operator)

in any context where a scalar constant is legal.

{2) In initialization lists for VECTOR, RING and STRING declara­

tions and as the operand of an operator~ ·:In these cases , the

label name must be used either as a simple expression or as the

left operand of an'@' field tailing operator. In this latter

case, (which is a kludge feature to facilitate table construction}

the field selector must specify a 16 bit field that lines up on

9-3

the half-word boundary and the bits specified by the field must

- , ,

not be modified by any other operator in the expression.

(3) As the operand of an EXIT operator.

Examples:

Ll: A+ B

L2:L3: GOTO L4

°10.1 SCALAR Statements

Syntax:

scalarstat = SCALAR sep(vardec, ',')

vardec = name [TO type]

10-1

A SCALAR statement specifies a list of names to be declared as variables of

type scalar. The <type>, if present, specifies the type of fields accessed

if the name is used as a field selector in a field tailing operation.

Example:

SCALAR A, B, C, TO VECTOR

10.2 CONSTANT Statement

Syntax:

constantstat = CONSTANT sep(condec, ',')

condec = name '+' conditional

A CONSTANT statement specifies a list of names to be declared as scalar

constants. The right hand side of each left arrow must be a constant

expression which specifies the value for the declared constant name.

Example:

CONSTANT X+3, Y+X+7

-------~----

10.3 VECTOR Statement

Syntax:

vectorstat = VECTOR vecdec

vecdec

_vecspec

vecdesc

= name [vecspec] ['+' initlist / ',' vecdec]

' [' [vecdesc] [type] ']'

= conditional1 [SIGNED] [ONE\BASED] [EXTERNAL conditonal]

[conditional2 (WORD/BIT)]

10-2

type =SCALAR/ VECTOR/ REFEREMCE /DESCRIPTOR/ RING/ STRING/ .ANY

initlist

SCAIA.'IIB /VECTORS/ REFERENCES/ DESCRIPTORS/ RINGS/ STRINGS/ ANYS

= sep(conditional, ',')

A VECTOR statement specifies a list of names to be declared as type vector.

Furthermore, for each name the following information may be specified:

• (l) a vector descriptor for the vector,

(2) space to be allocated for the vector,

(3) initial values for the vector elements,

(4) a type for the vector elements.

Syntactically, each name declared may be optionally followed by a specifi­

cation enclosed in square brackets (<vecspec>) and the last name in the

list may be optionally followed by an initialization list (<initlist>).

Inside the square brackets may be specified vector descriptor information

(<vecdesc>) and a vector element type (<type>).

Element type snecification.

If present, (<type>) specifies the type of the values stored in the vector.

If not present then SCALARS is assumed (note exception below if initialization

list is present).

10-3

Variable vector specification.

If neither the vector descriptor in~ormation nor the initialization list is

present, then the name is declared as a variable and no space is allocated

for the vector. In this case, vector space allocation and descriptor set-up

must be done by the program at runtime.

Vector descriptor specification.

If the vector descriptor information (<vecdesc>) is present, then the name

is declared as a constant of type vector and space is allocated for the

vector. The <conditional> expressions must be constant, <conditional1>

specifying the vector size in elements and <conditional2> the element size.

Legal element sizes are 8-BIT, 16-BIT and x-WORD where xis in the range

1 to 127. If no element size is specified, then one word elements are

assumed if the vector elements are of type scalar and 2-word elements are

assumed if the vector elements are of type reference, or vector. Further­

more, if the element type is vector or reference, then the element size, if

present, must be 2 words. If SIGNED is present, then partial word elements

when fetched will be sign extended to 32-bit values. Otherwise, the high

order bits are zero. If ONE\BASED is present then indices in the vector

begin at one instead of zero.

External vector specification.

If the EXTERNAL clause is present in the vector descriptor information then

the name is declared as a vector constant for an external segment vector.

The expression after EXTER.l'iAL, which must be constant in the range ¢-l 77777B,

specifies the capability number. The base address is taken to be zero.

External vectors may not be initialized.

10-4

Vector of initialization.

If the initialization list is present then vector storage for the vector

is allocated as constant. Default values for vector size (number of elements),

vector element size, and vector element type are provided if these specifica­

tions are not present according to which form of initialization list is

present. If a vector element size and/or a vector element type is present

then it must match the corresponding default size or type for the specified

form of initialization list. Initialization lists may be in one of four

forms:

(1) A list of constant expressions of type scalar. The

successive values in the list specify the values of

successive elements of the constant vector. If no vector

size is specified, then the default size matches the length

of the initialization list. If a vector size is specified,

then it must be at least as big as the list length. The

remaining values will be initialized to zero. The

element size, if present,must not be larger than one word.

The element type, if present, must be scalar. The default vector

element size and vector element type are one word and scalar,

respectively.

(2) A list of expressions of type vector. The successive

vector elements are initialized to the vector descriptors

specified in the initialization list. The list elements

must be previously declared names of type vector constant.

The vector size, if present, must exactly match the length

of the initialization list. The element size, if present,

must be 2 words. The element type, if present, must be

-------------------~

vector. The default values for vector element size and

vector element type are 2 word and vector, respectively.

(3) A list of constant expressions of type reference. The

successive vector elements are initialized to the references

specified in the initialization list. The vector size,

if present, must exactly match the length of the initial­

ization list. The list elements must be string constants

or names previously declared in a STRING statement. The

element size, if present, must be 2 words and the element

type if present, must be reference. The default values for

vector element size and vector element type are 2 word and

vector respectively.

(4) A single string constant. The successive vector elements

are initialized to the character code values for the

successive characters of the string constant. The vector

size, if present, must exactly match the size of the string

constant. The element size, if present, must be 8 bits.

The element type, if present, must be scalar. The default

values for vector element size and vector element type

are 8 bit and scalar, respectively.

Example:

VECTOR A,B[7], C[l28 2 WORD VECTORS]

VECTOR D[6 16 BIT]+¢, 1, 2, 3, 4, 5

VECTOR s + II .ABCDEF"

10-5

10. 4 RING Statement

Syntax:

ring = RING vecdec

The syntax and semantics of a RING statement are identical to a

VECTOR statement except that:

(1) an extra element is allocated in the space for

the ring, since a "full" ring actually has one

unused element (see SIPU manual), and;

(2) for each name in a RING statement, a scalar

name is declared with a name which appends 'PTR'

to the vector name. This scalar name is intended

for use as the selector for ring access operations.

The selector name is declared as a constant if

an initialization list is specified for the name,

the value of the constant being a selector for

all the elements in the ring. A variable selector

is declared if no initialization list is present.

10-6

l0.5 STRING Statement

Syntax:

stringstat = STRING vecdec

10-7

A STRING statement specifies a list of names to be declared a.s constants

of type reference. The constant reference value is to a three word value

which is interpreted as a "string descriptor." The first two words of a

string descriptor are a vector descriptor for the string and the third

word is a ring selector. The syntax for STRING statements is exactly

the same as VECTOR statements. The rules for vector descriptor specifi­

cation, vector initialization, and vector element type specification are

exactly the same as for VECTOR statements except that an extra element is

always added to the vector size and that the default element size is 8 bits.

The string descriptor is allocated and initialized according to the

following rules:

(l) If' no vector descriptor information (<vecdesc>) and

no initilization list is present then an uninitialized

3 word string descriptor is allocated in global memory.

(2) If only the (<vecdesc>) is present (no initialization

list) then a 3 word string descriptor is allocated in

global memory and the first two words are initialized

to a vector descriptor for a vector allocated in global

memory. The ring selector word is not initialized.

(3) If an initialization list is present, then a 3 word

string descriptor is allocated in constant memory.

The.first two words are initialized to a vector

descriptor for the vector initialized in constant

memory and the third word is initialized to a ring

selector for all of the constant vector.

10.6 REFERENCE Statement

Syntax:

referencestat = REFERENCE sep(vardec, ',')

10-8

The REFERENCE statement specifies a list of names to be declared as

variable values of type reference. If present, <type> specifies the type

of value the reference locates. If not present, type scalar is assumed.

Example:

REFERENCE X, Y TO VECTOR, Z

10.7 DESCRIPTOR Statement

Syntax:

de~criptorstat = DESCRIPTOR spe(vardec, ',')

The DESCRIPTOR statement specifies a list of names to be declared as

variables of type descriptor, i.e., type reference or type vector simultane­

ously. If present, <type> specifies the type of values accessed through

the vector descriptor or reference. If not present, then type scalar is

assumed.

10-9

10.8 FIELD Statement

Syntax:

fieldstat = FIELD sep(fldspec, ',')

fldspec = name '(' [SIGNED] conditional1 [' :' conditional2

conditional3 / THRU conditional] [TO type] ')'

A FIELD statement specifies a list of names to be declared as scalar

constants and initialized as field selectors. The three <conditional>

expressions must be constant. The <conditional1> specifies a displacement.

The <conditiona12> and <Conditional3>, if present, specify the left

and right bits of the partial word field inclusive. The expression after

THRU, if present specifies the displacement of the last word of a

multi-word field. If only one ex.press ion is present , a full word field

is assumed. The high order bit of a scalar is bit r/J and the low order

bit is bit 31. If present the <type> specifies the type of value accessed

by the field selector. If the specified type is for vectors or references

then the specified selector must be for a two word field. If the <type>

is not present then type scalar is assumed.

Example:

FIELD F(3), G(¢:17, 31), H(2 THRU 4)

10.9 EQUIVALENCE Statement

Syntax:

equivalencestat = EQUIVALENCE sep(eqvdec, ',')

eqvdec = name '=' name '[' conditional']'

10-10

An EQUIVALENCE statement specifies a list of names which are to be

declared as equivalent to the values specified on the right hand side

of the equal signs. The right hand side specifies an element of a

vector. The right hand name must be previously declared as a vector

with space allocated in global memory and with element size of one or

two words. The name will be declared with the same type as the values

in the vector elements. The <conditional> inside the square brackets

must be a constant expression which specifies the index of the vector element.

10.10 MACRO Statement

Syntax:

macrostat = MACRO name r' (' [dummylist] I) I] 1+ 1 macro body

dummylist = sep(name, ',')

10-11

The MACRO statement specifies the definition of the macro being declared.

The <macrobody> may be any arbitrary string of primaries up to but not includ­

ing the statement terminating semi-colon or carriage return. An exclamation

point(!) within a <macrobody> is identical to a semi-colon except that it

does not terminate the macro definition. This allows macro definitions that

expand into several statements. Macro calls within a macro definition body

are not expanded at definition time but at call time. The <dummylist> , if

present, specifies a list of names which, when used within the macro body,

serve to mark the places where the actual arguments of a macro call should

be substituted. The use of a name as a dummy argument in no way interferes

with any other use of the same name within a SIMPLE program.

Examples:

Macro Calls

Syntax:

MACRO DOUBLE(XX) + (XX:)*2

MACRO ERROR (XX)+ (EFUNC(XX) & FRETURN)

macrocall = name [actuallist]

actuallist = '('[sep(actualargument, ',')]')'

A macro call occurs when a name previously declared as a macro occurs any­

where within a statement. If the macro is defined with a <dummylist>,

then the call must include an <actuallist> and the number of actual arguments

10-12

must exactly match the number of dummy arguments. An actual argument is

any string of primaries balanced with respect to parentheses, not containing

a semi-colon or carriage return primary, and delimited by a comma or a

colon not enclosed in inner parentheses. The effect of the macro call is

that the macro body, with actual arguments substituted for dummy arguments,

replaces the macro call in the statement. Macro calls are expanded in a

strictly le:rt to right scan of the statement. After a macro call, the

scan continues with the first primary of the substituted definition.

Note that substitution is done by primaries. Arbitrary string substitution

is not possible.

-- ----------

11. Function Block Statements

11.1 FUNCTI.ON Statement

Syntax:

functionstat = FUNCTION name '(' {formallist] ')' {RETURNING type]

formallist = sep(formal, ',')

formal = [type] name [TO type] I':' conditional]

11-1

A FUNCTION statement must be the first statement of a function block. It

specifies the function name, the type of value the function returns, if

successful, and a list of formal arguments. The function name specified is

declared as a global, scalar constant with a value called the function number

which is different from all other function numbers. If the RETURNING

clause is present, then the <type> specifies the type of value returned

by the function on success return (default type is scalar). Fail return

values are always of type scalar. Each name in the formal argument list is

declared as a local variable with type specified by the prededing <type>

(default type is scalar). The TO clause, if present, specifies the type

of value referenced in memory if the formal argument is used as a vector

descriptor, reference, or field selector (default type is scalar). If present,

the <conditional> after the colon, which must be a constant expression,

specifies a default value to be assigned to the formal argument (which must

be of type scalar) if no actual argument is provided in a function call.

Example:

FUNCTION F(X, Y:l, VECTOR Z TO RINGS) RETURNING REFERENCES

ll.2 END Statement

Syntax:

endstat ::; END

ll-2

The END statement may be optionally used as the last statement of a global

declaration or function block

12-1

12. Control Blocks

Control blocks allow specification of a sequence of statements that as

a group may be executed out of linear sequence. There are two kinds of

control blocks:

(1) conditional control blocks which specify a sequence

of statements which is executed only if a specified

expression evaluates to a true (or false) value;

(2) iteration control blocks which specify a sequence of

statements which is executed repeatedly while a

specified condition is true.

12-2

12.1 Conditional Control Blocks

Syntax:

ifstat = IF or (DO/ THEN}

elseifstat = ELSEIF or (DO/ THEN)

elsestat = ELSE [DO]

endifstat = ENDIF

A conditional control block takes the form

IF statement

. if'body

EISEIF statement(¢ or more ELSEIF's allowed)

. elseif'body

ELSE statement (ELSE may be omitted)

. elsebody

ENDIF statement

The dots may be any sequence of executable statements balanced and well

nested with respect to IF and ENDIF, FOR and ENDFOR . and WHILE and

ENDWHILE statements. The statements of an if'body or elseif'body are

executed only if it is the first body in the structure for which the

preceding <Or> is true. The elsebody is executed if none of the <or>'s

(which must have results of type scalar) are true. After the body is

executed control transfers to the statement after the ENDIF . In SIMPLE

a value is defined as true if it is odd and false if it is even. Systematic

indentation of nested control blocks is strongly recommended.

---- ------------~

12-3

12.2 Iteration Control Blocks

Syntax:

forstat = FOR forclause (DO/ THEN)

forclause = [reporder] name '+' (whclause / toclause)

whclause = conditional1 [',' conditional2] WHILE conditional3

toclause = conditional1 [BY conditiona12] TO conditional3

whilestat = WHILE whileclause (DO/ THEN)

whileclause = [reporder] conditional

reporder = TBU / TUB / BTU / BUT / UTB / UBT

endforstat = ENDFOR

endwhilestat = ENDWHILE

An.iteration control block takes the form

FOR or WHILE statement

. forbody

ENDFOR or ENDWHILE

The dots may be any sequence of executable statements well nested with

respect to other control blocks. In general, every repetition consists of

three actions.

Test the test expression is evaluated and if false

repetition ends and control is transferred to

the statement after the ENDFOR or ENDWHILE

Body

Update

the statements of the forbody are executed

the update expression is evaluated and assigned to

the iteration control variable.

12-4

There are six possible orders of execution of the three actions within

a single repetition: BTU, BUT, TBU, TUB, UTB, UBT. In addition to these

actions an initial value for the iteration control variable can be

specified.

If present <reporder> specifies the order actions are performed within a

repetition. If not present, then TBU is assumed. However, if a whclause

is _present with no initialization then UTB is assumed.

In a <forclause> the name specifies the iteration control variable. If

the name is already declared it must be a scaJ.ar variable, otherwise it is

declared locally as a scalar variable.

In a <Whclause> , if <conditional2> is present, then <conditionaJ.1>

specifies the initial value for the iteration control variable and

<conditiona12> is the update expression. If <conditionaJ.2> is not present,

<conditional1> is the update expression and no initiaJ.ization is specified.

<conditional3> is the test expression.

In a <toclause>, <condi tional1> specifies the initial value of the

iteration control variable, <condi tional2>, which is reevaluated on each

repetition, specifies the value to be added to the iteration control

variable as the update action, and <Condi tonaJ.3 > specifies the test

expression. Iteration will continue while the value of the control

variable is not greater than the value of the test expression, unless

the increment is a negative constant,in which case while the control

variable is not less than the test expression. If <conditional2>. is .. not

present, an increment of one is assumed.

In the <whileclause> , the <Condi tionaJ.> specifies the test expression.

No initialization and update action is specified, thus the six repetition

orders actually specify only two different cases , body-test and test-body.

13. Expression Statements

Syntax:

e.xpressionstat = expression

13-1

.An expression statement consists solely of an expression. The expression

is evaluated and its result value is left in the accumulator of the SIPU.

- ---

14. Miscellaneous Statements

14.1 BREA.~ Statement

Syntax:

breakstat = BREAK

The BREAK statement causes a breakpoint to be set in the program.

14-1

A-1

Appendix A

Character Codes

Code Char- Code Char- Code Char- Code Char-
acter acter acter acter

I

r/) blank 20 i/J 4o @ 60 p

l ! 21 l 41 A 61 Q

2 II 22 2 42 B 62 R

3 # 23 3 43 C 63 s

4 $ 24 4 44 D 64 T

5 % 25 5 45 E 65 u

6 & 26 6 46 F 66 V

7 ' 27 7 47 G 67 w

10 (30 8 50 H 70 X

11) 31 9 51 I 71 y

12 * 32 : 52 J 72 z

13 + 33 ; 53 K 73 [

14 , 34 < 54 L 74 \

15 - 35 = 55 M 75]

16 . 36 > 56 N 76 +

17 I 37 ? 57 0 77 +

155 Carriage
return

Codes in octal

f

A-2

Appendix B

Rules for Types for Expression Operators

operator left operand type right operand type result type

& all types OK all types OK same as right operand

WHERE all types OK all types OK same as left operand

IF scalar given by Appendix C if

THEN all types OK ELSE present, other-
wise is same type as
THEN operand

- -

EISE must match THEN
type according to
Appendix C

+ ----------------- See Appendix C -------------------------
OR AND (Boolean)

= #

< <=-

> >= scalar scalar scalar

REM+ - -
* I
CYCLE SHIFT

RETURN must match return

$RETURN type in FUNCTION 1.m.defined statement according
. FRETURN to Appendix C

EXIT label name 1.m.de fined

+ -NOT (unacy) scalar scalar

GOTO scalar 1.m.defined

$ indirection reference specified by name
declaration or any

@ reference all types OK reference

table continues

A-3

operator left operand type right operand type result type

. field reference scalar specified by FIELD
statement or any

$ field all types OK scalar specified by FIELD
statement or any

@ field scalar scalar scalar

[] -~c•~---•- ~- ··vector .. ·scalar specified by name ..

declaration or any

() function call scalar arguments must be specified by FUNCTION
of type specified statement
in FUNCTION state-
ment

FRONT REAR vector scalar specified by name

GETF GETR
declaration or any

PUTF PUTR

AND OR scalar scalar scalar

EOR (logical)

.ABS scalar scalar

V

~
+>
rrj

@
!--t
V
A
0

rd
s::
0
()

V
(I)

Scalar

Scalar scalar
1 word

Vector illegal

Ref'erence illegal

Descriptor illegal

Any scalar
1 word

Appendix C

Type Semantics

first operand type

Vector Reference

illegal illegal

vector illegal
2 words

illegal reference
2 words

vector reference
2 words 2 words

vector reference
2 words 2 words

A-4

Descriptor Any

illegal scalar
1 word

vector vector
2 words 2 words

reference reference
2 words 2 words

descriptor descriptor
2 words 2 words

descriptor any
2 words 1 word

This table specifies the type semantics for the following four contexts

within expressions. Some combination of operand types are illegal. For

the remaining combinations, the result type and the number of words of value

to copy are specified.

1) Assignment operator.

first operand= left operand of'+'

second operand= right operand of 1+ 1

If "illegal" then a compile time type check error will occur.

2) Function Argument Passing.

first operand= formal argument

second operand= actual argument

I:f "illegal" then a compile time type check error will occur.

3) Returning value successfully from function.

first operand= operand of SREWRN or RETURN

second operand= type specifies in FUNCTION statement

If "illegal" then a compile time type check error will occur.

4) IF operator when ELSE clause present.

first operand= THEN operand

second operand= ELSE operand

A-5

If "illegal" a compile time error will occur only if the result of the IF

operator is used in a larger expression.

A-6

Appendix D

Reserved Words

ABS EQUIVALENCE REM

AND EXTER."IIJAL RETURN

ANY EXIT RETURNING

ANYS FIELD RING

BIT FOR • RINGS

BREAK FRETURN SCALAR

BTU FRONT SCALARS

BUT FUNCTION SHIFT

BY GETF SIGNED

CODE GETR· SRETURN

CONSTANT GLOBAL STRING

CYCLE GOTO STRINGS

DESCRIPI'OR IF TBU

DESCRIPTORS MACRO THEN

DO NOT THRU

ELSE ONE\BASED TUB

ELSEIF OR UBT

END PUTF UTB

ENDFOR PUTR VECTOR

ENDIF REAR VECTORS

ENDWHILE REFERENCE WHERE

EOR REFERENCES WHILE

WORD

A-7

Appendix E

Constant Expressions

When most operators are used as principle operators, an expression can be

evaluated as a constant expression if all its operands are themselves

constant expressions. All the exceptions to this rule are listed below.

1) Operators that yield unspecified results may not be evaluated as constant

expressions. This includes the following operators: GOTO, RETURN,

SRETURN, FRETURN, and EXIT.

2) The assignment and function call operators may not be constant evaluated.

3) Operators that reference memory may not be evaluated as constant expres­

sions. This includes the following operators: indirection; field

access operators, ring access operators, and subscripting.

4) The IF operator is evaluated as a constant expression if (a) the IF

operand is constant and true valued and the THEN operand is constant

or (b) the IF operand is constant and false valued and the ELSE

operand is present and constant.

5) The reference operator('@') is evaluated as a constant if its operand

is (a) a constant expression or (b) a simple global variable name.

	Table of Contents
	1. Introduction
	2. SIMPLE Character Set
	3. SIMPLE Program Lexical Structure
	4. Statement Syntax Notation
	5. Memory
	6. Values
	7. Names
	8. Expressions
	9. Statements
	10. [More statements]
	11. Function Block Statements
	12. Control Blocks
	13. Expression Statements
	14. Miscellaneous Statements
	Appendices
	A. Character Codes
	B. Rules for Types for Expression Operators
	C. Type Semantics
	D. Reserved Words
	E. Constant Expressions

