
1. Introduction 

SOME FAILINGS OF APL 

Paul McJ ones 
Computer Science Department 

University of California, Berkeley 

2 March 1973 

APL\360 is currently one of the most fashionable and widely used 

interactive programming languages. An examination of the language would 

seem to indicate that APL succeeds not on its own merits, but for lack of 

suitable competition. In the following sections we catalog some of the most 

serious problems. (Knowledge of APL is assumed.) 

2. C antral Structure 

2 .1. APL provides no conditional or repetitive constructs, forcing the 

programmer to rely on the tricky branch operator (''monadic right arrow"). 

In fact, most ways of writing a conditional transfer in APL have the side 

effect of creating an array! 

2. 2. The branch operator takes a line number as an operand, so inserting 

a new line into an APL function is liable to have some unexpected effects. 

A label in APL is just a symbolic name for a line number and is meaningful 

only in the function body containing its definition; passing a label as an 

argument to another function is allowed but not likely to be useful. 



-2-

2. 3. Much of the conciseness of the language is due to automatic 

extension of the scalar operators to arrays on an elementwise basis, 

and to the "composite functions" reduction, inner product, and outer 

product. Unfortunately these mechanisms are not applicable to user­

defined functions. 

3. Naming Structure 

3.1. Free variables of APL functions are bound dynamically ("nesting 

by encounter" in APL parlance). This hinders program modularity, 

since to call a function one must be sure no global variable referenced 

by that function coincides with a local variable of the caller. 

3. 2. There is no "own storage" (storage private to a function and 

surviving from call to call, like local variables in FORTRAN or own 

variables in ALGOL 60). 

3. 3. The limit of two arguments to a user-defined function is very 

restrictive, and it is infuriating that some of the built-in functions cheat 

(e.g. A,[2]B or c[Jl; J2; J3; J4; JS]). 

3. 4. Since there is no form of call-by-reference, a function is constrained 

to return only a single value. 

4. Syntax 

4.1. Right-to-left association of operators is unnatural; we read from 

left to right. 



-3-

4. 2. Some of the operators in APL are far from mnemonic. Examples: 

5. Data Types and Structures 

1ox means 
::t.25 means 

SIN(X} 
DATE(} 

5.1. APL provides a very complete and elegant set of operations on 

multidimensional, homogeneous arrays of numbers and characters. But 

this is not enough if the language is to be considered "general purpose". 

We need to be able to construct lists, trees, and/or arbitrary directed 

graphs. 

5. 2. The only way for an APL program to decide whether a scalar is 

a character or a number is to compare it with every possible character 

value; the object is a number if and only if all the comparisons result in 

ine qua 1 ity. 

6. Miscellaneous 

6.1. The lack of type declarations in the language reduces beneficial 

redundancy and makes efficient implementation difficult. 

6. 2. No general input/output facilities are provided in the language. 

6.3. The coercions {one-element array~scalar, etc.) are clumsy. 

6. 4. It is silly to decree that Oto is 1 . 

6. 5. The index origin should not be a global variable. 



-4-

6. 6. There should be character constants for "carrier return", 

"backspace", etc. 

6. 7. The dependence on the IBM Selectric terminal (1050, 2 741} and 

special type ball is pretentious. Teletypes are more widely available, 

and allow character-by-character interaction because of the full-duplex 

communications discipline. 

6. 8. There should be context editing capabilities in the editor. 




